帳號:guest(3.15.208.242)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):辜翊航
作者(外文):Ku, Yi Hang
論文名稱(中文):異質介面之電子能帶結構研究-石墨烯/氧化鋅與二硫化鉬/二硫化鎢
論文名稱(外文):Band alignment studies of graphene/ZnO and MoS2/WS2 heterostuctures
指導教授(中文):果尚志
陳家浩
指導教授(外文):Gwo, Shangjr
Chen, Chia Hao
口試委員(中文):古慶順
李曉勤
李奕賢
口試委員(外文):Ku, Ching Shun
Li, Xiao Qin
Lee, Yi Hsien
學位類別:碩士
校院名稱:國立清華大學
系所名稱:先進光源科技學位學程
學號:103001501
出版年(民國):105
畢業學年度:104
語文別:中文
論文頁數:73
中文關鍵詞:二維材料能帶結構光電子能譜石墨烯過渡金屬二硫屬化物
外文關鍵詞:2D materialband structureX-ray photoelectron spectroscopygraphenetransition-metal dichalcogenide
相關次數:
  • 推薦推薦:0
  • 點閱點閱:475
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
單層石墨烯被發現以來,二維材料在研究及發展上獲得相當大的關注。其中,從結構的觀點,二維材料由多層的原子厚度之平面結構組成,而層與層之間為較弱的凡德瓦(Van der Waals)鍵結,使各單層在結構維持相當程度的本徵特性;從材料特性的觀點,二維材料涵蓋廣闊,包括:半金屬的石墨烯,半導體的過渡金屬二硫屬化物(TMDCs)、黑磷,絕緣體的氮化硼…等等,由此衍生的介面結構十分新穎,而相關的光學、電性和結構等研究亦蓬勃地發展。但可惜的是介面的能帶結構無法從這些研究中被清楚地了解,又能帶結構對半導體元件的設計與應用非常重要。因此,二維材料在介面的能帶結構是近期的研究重點。
而本文即以二維材料組成之異質介面的能帶結構為重點,並在國家同步輻射中心(NSRRC)利用掃描式光電子能譜顯微術(SPEM),進行(1)石墨烯與氧化鋅(Graphene/ZnO)異質介面,(2)二硫化鉬與二硫化鎢(MoS2/WS2)異質介面,兩個主題的能帶結構研究。並由主題(1)的結果,發現由原子層沉積(ALD)成長氧化鋅薄膜在不同層數石墨烯覆蓋形成的介面中,氧化鋅薄膜在介面維持著平帶(flat band)的能帶特性。又此與文獻,石墨烯和單晶氧化鋅形成蕭特基(Schottky)接面的電性量測結果相當不同。另外,主題(2)比較由兩種不同的鍵結方式(凡德瓦鍵、共價鍵)形成之異質介面,發現兩種介面的能帶結構有著截然不同的特性,若以此作為應用基礎,相信對二維結構在半導體元件的開發上有所貢獻。

關鍵字: 二維材料、能帶結構、光電子能譜、石墨烯、過渡金屬二硫屬化物
In this study, we focus on 2D material interface and measured the band structure by Scanning Photo-Electron Microscopy (SPEM) at National Synchrotron Radiation Research Center (NSRRC). The experiment with two topics: (1) Graphene/ZnO heterojunction, and (2) MoS2/WS2 heterostructures. From the topic (1), we found ZnO with flat band structure contact to the interface, and it was quite different from the results of Schottky contact in literature. In topic (2), we compared two MoS2/WS2 hetero- structures with different bonding at the interface (Van der Waals bond and covalent bond), and we found the structures have distinct band structure properties. With these new results, we believe it will contribute to the application of two-dimensional materials in the future.

Keywords: 2D material, band structure, X-ray photoelectron spectroscopy, graphene, transition-metal dichalcogenide

摘要 I
Abstract II
致謝 III
目錄 V
圖目錄 VIII
表目錄 XI
第一章 緒論 1
1.1前言 1
1.2研究動機 4
第二章 文獻回顧 5
2.1石墨烯異質介面 5
2.1.1石墨烯之特性簡介 5
2.1.2石墨烯/氧化鋅(Graphene/ZnO)異質介面 9
2.2 TMDCs異質結構 11
2.2.1 TMDCs之特性簡介 11
2.2.2 TMDCs之垂直堆疊(Vertical stacking)異質結構 14
2.2.3 TMDCs之橫向成長(Lateral growth)異質結構 20
第三章 實驗原理及分析方法 23
3.1同步輻射光源(Synchrotron Radiation Light Source) 23
3.1.1同步輻射簡介 23
3.1.2同步輻射與傳統X光光源比較 25
3.2 X光光電子能譜術(X-ray Photoemission Spectroscopy; XPS) 27
3.3掃描式光電子顯微術(Scanning Photoelectron Microscopy; SPEM) 33
3.4拉曼光譜(Raman Spectrum) 35
3.5 光激發螢光光譜(Photoluminescence Spectrum) 36
第四章 Graphene/ZnO異質介面之能帶結構 38
4.1 樣品設計與製備 38
4.2拉曼光譜分析 42
4.3 光電子能譜分析 44
4.4 Graphene/ZnO介面-能帶圖(Band Diagram) 49
第五章 MoS2/WS2異質介面之能帶結構 50
5.1樣品設計與研究方法 50
5.2 MoS2/WS2之垂直堆疊(Vertical stacking)異質結構 52
5.2.1螢光光譜分析 52
5.2.2光電子能譜分析 53
5.2.3 MoS2/WS2之垂直堆疊異質結構-能帶圖(Band Diagram) 58
5.3 MoS2/WS2之橫向成長(Lateral growth)異質結構 60
5.3.1螢光光譜分析 60
5.3.2光電子能譜分析 61
5.3.3 MoS2/WS2之側向成長異質結構-能帶圖(Band Diagram) 65
5.4垂直堆疊與橫向成長異質結構之比較 66
第六章 總結 67
第七章 參考文獻 69
[1] K. S. Novoselov et al., Electric field effect in atomically thin carbon films. Science 306, 666-669 (2004)
[2] S. Bae et al., Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat Nano 5, 574-578 (2010).
[3] Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, M. S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat Nano 7, 699-712 (2012).
[4] X. Ling, H. Wang, S. Huang, F. Xia, M. S. Dresselhaus, The renaissance of black phosphorus. Proceedings of the National Academy of Sciences of the United States of America 112, 4523-4530 (2015).
[5] M. Bernardi, M. Palummo, J. C. Grossman, Extraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensional monolayer materials. Nano letters 13, 3664-3670 (2013).
[6] A. K. Geim, I. V. Grigorieva, Van der Waals heterostructures. Nature 499, 419-425 (2013)
[7] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, A. K. Geim, The electronic properties of graphene. Reviews of Modern Physics 81, 109-162 (2009).
[8] 翁任賢, “石墨烯(Graphene),”(2013)
[9] A. K. Geim, K. S. Novoselov, The rise of graphene. Nature materials 6, 183-191 (2007).
[10] G. Giovannetti et al., Doping Graphene with Metal Contacts. Physical Review Letters 101, (2008).
[11] Y. y. Wang et al., Raman Studies of Monolayer Graphene: The Substrate Effect. The Journal of Physical Chemistry C 112, 10637-10640 (2008).
[12] A. C. Ferrari, D. M. Basko, Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat Nano 8, 235-246 (2013).
[13] Y. Y. Wang, Z. H. Ni, Z. X. Shen, H. M. Wang, Y. H. Wu, Interference enhancement of Raman signal of graphene. Applied Physics Letters 92, 043121 (2008).
[14] A. C. Ferrari et al., Raman Spectrum of Graphene and Graphene Layers. Physical Review Letters 97, (2006).
[15] Ü. Özgür et al., A comprehensive review of ZnO materials and devices. Journal of Applied Physics 98, 041301 (2005).
[16] D. C. Look, Recent advances in ZnO materials and devices. Materials Science and Engineering: B 80, 383-387 (2001).
[17] A. Tsukazaki et al., Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO. Nature materials 4, 42-46 (2005).
[18] M. Law, L. E. Greene, J. C. Johnson, R. Saykally, P. Yang, Nanowire dye-sensitized solar cells. Nature materials 4, 455-459 (2005).
[19] R. Zou et al., ZnO nanorods on reduced graphene sheets with excellent field emission, gas sensor and photocatalytic properties. Journal of Materials Chemistry A 1, 8445 (2013).
[20] B. Nie et al., Monolayer graphene film on ZnO nanorod array for high-performance Schottky junction ultraviolet photodetectors. Small 9, 2872-2879 (2013).
[21] X.-W. Fu et al., Graphene/ZnO nanowire/graphene vertical structure based fast-response ultraviolet photodetector. Applied Physics Letters 100, 223114 (2012).
[22] K. F. Mak, C. Lee, J. Hone, J. Shan, T. F. Heinz, Atomically ThinMoS2: A New Direct-Gap Semiconductor. Physical Review Letters 105, (2010).
[23] Zhang et al., Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2. Nat Nano 9, 111-115 (2014).
[24]C. Zhang et al., Probing Critical Point Energies of Transition Metal Dichalcogenides: Surprising Indirect Gap of Single Layer WSe2. Nano letters 15, 6494-6500 (2015).
[25] Y. Gong et al., Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nature materials 13, 1135-1142 (2014).
[26] X. Hong et al., Ultrafast charge transfer in atomically thin MoS(2)/WS(2) heterostructures. Nature nanotechnology 9, 682-686 (2014).
[27] H. Heo et al., Interlayer orientation-dependent light absorption and emission in monolayer semiconductor stacks. Nature communications 6, 7372 (2015).
[28] Y. Yu et al., Equally efficient interlayer exciton relaxation and improved absorption in epitaxial and nonepitaxial MoS2/WS2 heterostructures. Nano letters 15, 486-491 (2015).
[29] H. Heo et al., Rotation-misfit-free heteroepitaxial stacking and stitching growth of hexagonal transition-metal dichalcogenide monolayers by nucleation kinetics controls. Advanced materials 27, 3803-3810 (2015)
[30] M. H. Chiu et al., Determination of band alignment in the single-layer MoS2/WSe2 heterojunction. Nature communications 6, 7666 (2015).
[31] Hui Fang et al., Strong interlayer coupling in van der Waals heterostructures built from single-layer chalcogenides. PANS 111, 17,6198-6202 (2014).
[32] Ming-Hui Chiu et al., Spectroscopic Signatures for Interlayer Coupling in MoS2 -WSe2 van der Waals Stacking. ACS NANO 8, 9, 9649-9656 (2014).
[33] Frank Ceballos et al., Ultrafast charge separation and indirect exciton formation in a MoS2- MoSe2 van der Waals heterostructure. ACS NANO 8, 12, 12717-12724 (2014).
[34] Shinichiro Mouri et al., Photoluminescence properties in monolayer MoSe2 –MoS2 hetero-structures. 第76回 應用物理学会秋季学術講演会, (2015)
[35] F. Ceballos, M. Z. Bellus, H. Y. Chiu, H. Zhao, Probing charge transfer excitons in a MoSe2-WS2 van der Waals heterostructure. Nanoscale 7, 17523-17528 (2015).
[36] Rivera et al., Observation of long-lived interlayer excitons in monolayer MoSe2-WSe2 heterostructures. Nature communications 6, 6242 (2015).
[37] C. Lin et al., Atomically thin resonant tunnel diodes built from synthetic van der Waals heterostructures. Nature communications 6, 7311 (2015).
[38] C. Huang et al., Lateral heterojunctions within monolayer MoSe2–WSe2 semiconductors. Nature materials 13, 1096-1101 (2014).
[39] C. Huang et al., Lateral heterojunctions within monolayer MoSe2–WSe2 semiconductors. Nature materials 13, 1096-1101 (2014).
[40] X. Q. Zhang, C. H. Lin, Y. W. Tseng, K. H. Huang, Y. H. Lee, Synthesis of lateral heterostructures of semiconducting atomic layers. Nano letters 15, 410-415 (2015).
[41] X. Duan et al., Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions. Nat Nano 9, 1024-1030 (2014).
[42] K. Chen et al., Lateral Built-In Potential of Monolayer MoS2 -WS2 In-Plane Heterostructures by a Shortcut Growth Strategy. Advanced materials 27, 6431-6437 (2015).
[43] Neil R Wilson et al., Band parameters and hybridization in 2D semiconductor heterostructures from photoemission spectroscopy. arXiv:1601.05865
[44] http://www.nsrrc.org.tw/
[45]張羅嶽,非接觸式化學微影應用於矽烷分子的研究,碩士論文,國立清華大學,民國98年.
[46] R. Eisberg and R. Resnick, Quantum Physics of Atom, Molecules, Solids, Nuclei, and Particles, 2th edition, John Wiley, NY, (1985).
[47] Vickerman, J. C. “Surface Analysis-The Principal Techniques “, John Wiley and Sons, New York (1997).
[48] 汪建民, 材料分析,中國材料科學學會 (1998).
[49] 崔古鼎, 物理雙月刊, 20,607 (1998).
[50] K. Horn “Semiconductor Interface Studies using Core and Valence Level Photoemission.” Applied physics A 51,289-304 (1990).
[51] 陳家浩,物理雙月刊,27,666, (2005).
[52] 羅光耀, ”螢光光譜量測原理及實驗”, 固態光學實驗
[53] Jia-Min Shieh et al., Photoluminescence: Principles, Structure, and applications. ” Nano Communications 12, (2005): 28.
[54] H. W. Shiu et al., Graphene as tunable transparent electrode material on GaN: Layer-number-dependent optical and electrical properties. Applied Physics Letters 103, 081604 (2013).
[55] C.-S. Ku, H.-Y. Lee, J.-M. Huang, C.-M. Lin, Epitaxial growth of ZnO films at extremely low temperature by atomic layer deposition with interrupted flow. Materials Chemistry and Physics 120, 236-239 (2010).
[56] C.-Y. Lin et al., Core-Level Shift of Graphene with Number of Layers Studied by Microphotoelectron Spectroscopy and Electrostatic Force Microscopy. The Journal of Physical Chemistry C 118, 24898-24904 (2014).
[57] K. Kośmider, J. Fernández-Rossier, Electronic properties of the MoS2-WS2 heterojunction. Physical Review B 87, (2013).
[58] J. Kang, S. Tongay, J. Zhou, J. Li, J. Wu, Band offsets and heterostructures of two-dimensional semiconductors. Applied Physics Letters 102, 012111 (2013).
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *