帳號:guest(18.219.70.7)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):駱俊宇
作者(外文):Luo, Jyun-Yu
論文名稱(中文):TAZ對於前列腺癌細胞遷移、侵入和腫瘤生成中的作用
論文名稱(外文):A Role for TAZ in Migration, Invasion, and Tumorigenesis of Prostate Cancer Cells
指導教授(中文):張中和
汪宏達
指導教授(外文):Chang, Chung-Ho
Wang, Horng-Dar
口試委員(中文):褚志斌
陳雅雯
口試委員(外文):Chuu, Chih-Pin
Chen, Ya-Wen
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生物科技研究所
學號:102080606
出版年(民國):104
畢業學年度:103
語文別:英文
論文頁數:49
中文關鍵詞:前列腺癌
外文關鍵詞:Prostate cancerTAZmigration
相關次數:
  • 推薦推薦:0
  • 點閱點閱:50
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
TAZ是一個WW結構域的蛋白質,在人體是由WWTR1基因編碼。它是一種由河馬腫瘤抑制途徑負調節的轉錄輔激活因子。在最近的研究中,Siew Wee Chan還發現,TAZ做為一種新的標靶,用於檢測和治療乳腺癌,因為它在~20%的乳腺癌中是過度表達的,並在其遷移,侵入和腫瘤生成中扮演重要的角色。在乳腺癌細胞中,Nuo Yang發現TAZ可以藉由活化EGFR的配體,Amphiregulin來促進EGFR訊號途徑並且促使腫瘤生成和轉移。然而,TAZ在前列腺癌中的作用從未被檢驗。
我們觀察到與正常前列腺上皮細胞RWPE-1相比,雄激素依賴的前列腺癌細胞LNCaP的TAZ表達被下調。相反地,在雄激素非依賴性細胞PC-3和DU145中, TAZ的表達被恢復,甚至比RWPE-1細胞更高。有趣的是,阻斷TAZ基因的表達強烈抑制細胞的增殖和遷移。此外,siRNA抑制TAZ的表達導致抑制PDK1,S6K和S6的磷酸化,並且降低caveolin-1,caveolin-2和KDM4C的表達。
熊果酸之前被報導過具有抗癌的活性。包含了促進細胞凋亡、抑制增殖和轉移。有趣的是在DU145細胞中,UA會降低TAZ的蛋白質水平。
因此,TAZ可能是前列腺癌的一種生物標記,並可能可以做為前列腺癌的治療的一個新的治療靶點。
Transcriptional co-activator with PDZ-binding motif (TAZ) is a WW domain -containing protein in human and encoded by the WWTR1 gene. It is a transcriptional coactivator negatively regulated by the Hippo tumor suppressor pathway. In a recent study, Siew Wee Chan has found that TAZ presents a novel target for detecting and treating breast cancer, because it is overexpressed in ~20% of breast cancer and plays a role in migration, invasion, and tumorigenesis. In breast cancer, Nuo Yang has found that TAZ through the EGFR ligand, amphiregulin, stimulates the EGFR signaling pathway and promotes tumorigenesis and metastasis. However, the role of TAZ in prostate cancer has never been examined.
We observed that compared to the normal prostate epithelial cell line, RWPE-1, the expression of TAZ is down regulated in the androgen-dependent LNCaP cells. In contrast, the expression of TAZ in androgen-independent cell lines, PC-3 and DU 145, is restored and even higher than that in RWPE-1 cells. Interestingly, the blockage of TAZ gene expression strongly suppresses proliferation and migration. Furthermore, inhibition of TAZ expression by small interfering RNA leads to inhibition of PDK1, S6K and S6s’ phosphorylation, and decrease of caveolin-1, caveolin-2 and KDM4C expression.
Ursolic acid (UA) has been reported to have anticancer activities by promoting apoptosis, suppressing proliferation and enhancing metastasis. Interestingly, we found that UA reduced protein levels of TAZ in DU145 cells.
Therefore, TAZ may serve as a biomarker for prostate cancer and represent a novel therapeutic target for the treatment of prostate cancer.
Catalog
INTRODUCTION 1
1. Prostate cancer 1
2. Transcriptional co-activator with PDZ-binding motif (TAZ) 3
3. Amphiregulin (AREG) 4
4. Ursolic Acid (UA) 5
MATERIALS AND METHODS 6
2.1 Cell lines 6
2.2 Lentivirus production and infection 6
2.3 Cell proliferation assay 7
2.4 Cell viability assay 8
2.5 Scratch wound-healing assay 9
2.6 Transwell invasion assay 9
2.7 Western Blotting 10
2.8 Total RNA extraction and Reverse transcriptase polymerase chain reaction (RT-PCR) 11
2.9 Statistics 14
RESULTS 15
TAZ expression levels in different prostate cancer cell lines 15
TAZ knockdown suppressed DU145 proliferation and migration 15
AREG as a secreted growth factor induced by TAZ and activates EGFR 16
Knockdown of TAZ suppresses some metastasis related oncogenes 17
UA suppresses the expression of TAZ protein in DU145 prostate cancer cell line. 17
Disscussion 19
REFERENCES 21
Figures and figure legends 33
Figure 1. The chemical structure of ursolic acid 33
Figure 2. TAZ is overexpressed in androgen independent prostate cancer cells. 34
Figure 3. The expression level of TAZ in TAZ knockdown DU145 cells. 35
Figure 4. TAZ knockdown in DU145 cells inhibit proliferation. 36
Figure 5. TAZ knockdown in DU145 cells inhibit migration. 37
Figure 5. TAZ knockdown in DU145 cells inhibit migration. 38
Figure 6. TAZ knockdown in DU145 cells don’t affect cell invasion. 39
Figure 7. Knock down TAZ reduces amphiregulin expression and tyrosine phosphorylation (activation) of EGFR. 40
Figure 8. TAZ does not signal through PTEN/PI3K/AKT and MAPK pathway to affect cell migration and proliferation. 41
Figure 9. TAZ signal through PI3K/PDK1-dependent, Akt-independent, mechanism to affect protein synthesis, cell proliferation and tumorigenesis. 42
Figure 10. TAZ is related with metastasis. 43
Figure 11. Ursolic acid suppresses DU145 cell survival depending on concentration and time. 44
Figure 12. Ursolic acid suppresses DU145 cell survival depending on concentration and time. 45
Figure 13. Ursolic acid suppresses cell migration in DU145 cells. 46
Figure 14. Ursolic acid suppress TAZ protein expression in DU145 cells. 47
Table 1. Primer sequences used for RT-PCR analyses. 48
Table 2. The PCR reaction conditions of genes. 49
1. W. Kleeberger, G. S. Bova, M. E. Nielsen, M. Herawi, A. Y. Chuang, J. I. Epstein, D. M. Berman, Roles for the stem cell associated intermediate filament Nestin in prostate cancer migration and metastasis. Cancer research 67, 9199-9206 (2007); published online EpubOct 1 (10.1158/0008-5472.CAN-07-0806).
2. L. Tomiyama, T. Sezaki, M. Matsuo, K. Ueda, N. Kioka, Loss of Dlg5 expression promotes the migration and invasion of prostate cancer cells via Girdin phosphorylation. Oncogene 34, 1141-1149 (2015); published online EpubFeb 26 (10.1038/onc.2014.31).
3. J. D. Paccez, G. J. Vasques, R. G. Correa, J. F. Vasconcellos, K. Duncan, X. Gu, M. Bhasin, T. A. Libermann, L. F. Zerbini, The receptor tyrosine kinase Axl is an essential regulator of prostate cancer proliferation and tumor growth and represents a new therapeutic target. Oncogene 32, 689-698 (2013); published online EpubFeb 7 (10.1038/onc.2012.89).
4. H. Gronberg, Prostate cancer epidemiology. Lancet 361, 859-864 (2003); published online EpubMar 8 (Doi 10.1016/S0140-6736(03)12713-4).
5. P. Lichtenstein, N. V. Holm, P. K. Verkasalo, A. Iliadou, J. Kaprio, M. Koskenvuo, E. Pukkala, A. Skytthe, K. Hemminki, Environmental and heritable factors in the causation of cancer - Analyses of cohorts of twins from Sweden, Denmark, and Finland. New Engl J Med 343, 78-85 (2000); published online EpubJul 13 (Doi 10.1056/Nejm200007133430201).
6. M. Stanbrough, G. J. Bubley, K. Ross, T. R. Golub, M. A. Rubin, T. M. Penning, P. G. Febbo, S. P. Balk, Increased expression of genes converting adrenal androgens to testosterone in androgen-independent prostate cancer. Cancer research 66, 2815-2825 (2006); published online EpubMar 1 (10.1158/0008-5472.CAN-05-4000).
7. A. W. Partin, J. Yoo, H. B. Carter, J. D. Pearson, D. W. Chan, J. I. Epstein, P. C. Walsh, The use of prostate specific antigen, clinical stage and Gleason score to predict pathological stage in men with localized prostate cancer. The Journal of urology 150, 110-114 (1993); published online EpubJul (
8. N. D. James, M. R. Sydes, M. D. Mason, N. W. Clarke, J. Anderson, D. P. Dearnaley, J. Dwyer, G. Jovic, A. W. Ritchie, J. M. Russell, K. Sanders, G. N. Thalmann, G. Bertelli, A. J. Birtle, J. M. O'Sullivan, A. Protheroe, D. Sheehan, N. Srihari, M. K. Parmar, S. investigators, Celecoxib plus hormone therapy versus hormone therapy alone for hormone-sensitive prostate cancer: first results from the STAMPEDE multiarm, multistage, randomised controlled trial. The Lancet. Oncology 13, 549-558 (2012); published online EpubMay (10.1016/S1470-2045(12)70088-8).
9. N. Sharifi, J. L. Gulley, W. L. Dahut, An update on androgen deprivation therapy for prostate cancer. Endocrine-related cancer 17, R305-315 (2010); published online EpubDec (10.1677/ERC-10-0187).
10. C. S. Higano, Side effects of androgen deprivation therapy: monitoring and minimizing toxicity. Urology 61, 32-38 (2003); published online EpubFeb (
11. C. P. Chuu, J. M. Kokontis, R. A. Hiipakka, J. Fukuchi, H. P. Lin, C. Y. Lin, C. Huo, L. C. Su, S. Liao, Androgen suppresses proliferation of castration-resistant LNCaP 104-R2 prostate cancer cells through androgen receptor, Skp2, and c-Myc. Cancer science 102, 2022-2028 (2011); published online EpubNov (10.1111/j.1349-7006.2011.02043.x).
12. S. Tai, Y. Sun, J. M. Squires, H. Zhang, W. K. Oh, C. Z. Liang, J. Huang, PC3 is a cell line characteristic of prostatic small cell carcinoma. The Prostate 71, 1668-1679 (2011); published online EpubNov (10.1002/pros.21383).
13. S. W. Chan, C. J. Lim, K. Guo, C. P. Ng, I. Lee, W. Hunziker, Q. Zeng, W. Hong, A role for TAZ in migration, invasion, and tumorigenesis of breast cancer cells. Cancer research 68, 2592-2598 (2008); published online EpubApr 15 (10.1158/0008-5472.CAN-07-2696).
14. K. Wang, C. Degerny, M. Xu, X. J. Yang, YAP, TAZ, and Yorkie: a conserved family of signal-responsive transcriptional coregulators in animal development and human disease. Biochemistry and cell biology = Biochimie et biologie cellulaire 87, 77-91 (2009); published online EpubFeb (10.1139/O08-114).
15. K. F. Harvey, X. Zhang, D. M. Thomas, The Hippo pathway and human cancer. Nature reviews. Cancer 13, 246-257 (2013); published online EpubApr (10.1038/nrc3458).
16. H. F. Yuen, C. M. McCrudden, Y. H. Huang, J. M. Tham, X. Zhang, Q. Zeng, S. D. Zhang, W. Hong, TAZ expression as a prognostic indicator in colorectal cancer. PloS one 8, e54211 (2013)10.1371/journal.pone.0054211).
17. G. O. Jeong, S. H. Shin, E. J. Seo, Y. W. Kwon, S. C. Heo, K. H. Kim, M. S. Yoon, D. S. Suh, J. H. Kim, TAZ mediates lysophosphatidic acid-induced migration and proliferation of epithelial ovarian cancer cells. Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology 32, 253-263 (2013)10.1159/000354434).
18. Z. Zhou, Y. Hao, N. Liu, L. Raptis, M. S. Tsao, X. Yang, TAZ is a novel oncogene in non-small cell lung cancer. Oncogene 30, 2181-2186 (2011); published online EpubMay 5 (10.1038/onc.2010.606).
19. S. X. Han, E. Bai, G. H. Jin, C. C. He, X. J. Guo, L. J. Wang, M. Li, X. Ying, Q. Zhu, Expression and clinical significance of YAP, TAZ, and AREG in hepatocellular carcinoma. Journal of immunology research 2014, 261365 (2014)10.1155/2014/261365).
20. J. M. Culouscou, M. Remacle-Bonnet, G. W. Carlton, G. D. Plowman, M. Shoyab, Colorectum cell-derived growth factor (CRDGF) is homologous to amphiregulin, a member of the epidermal growth factor family. Growth factors 7, 195-205 (1992).
21. F. L. Liu, C. C. Wu, D. M. Chang, TACE-dependent amphiregulin release is induced by IL-1beta and promotes cell invasion in fibroblast-like synoviocytes in rheumatoid arthritis. Rheumatology 53, 260-269 (2014); published online EpubFeb (10.1093/rheumatology/ket350).
22. G. D. Plowman, J. M. Green, V. L. McDonald, M. G. Neubauer, C. M. Disteche, G. J. Todaro, M. Shoyab, The amphiregulin gene encodes a novel epidermal growth factor-related protein with tumor-inhibitory activity. Molecular and cellular biology 10, 1969-1981 (1990); published online EpubMay
23. N. C. Luetteke, T. H. Qiu, S. E. Fenton, K. L. Troyer, R. F. Riedel, A. Chang, D. C. Lee, Targeted inactivation of the EGF and amphiregulin genes reveals distinct roles for EGF receptor ligands in mouse mammary gland development. Development 126, 2739-2750 (1999); published online EpubJun
24. N. E. Willmarth, S. P. Ethier, Autocrine and juxtacrine effects of amphiregulin on the proliferative, invasive, and migratory properties of normal and neoplastic human mammary epithelial cells. The Journal of biological chemistry 281, 37728-37737 (2006); published online EpubDec 8 (10.1074/jbc.M606532200).
25. C. Berasain, M. A. Avila, Amphiregulin. Seminars in cell & developmental biology 28, 31-41 (2014); published online EpubApr (10.1016/j.semcdb.2014.01.005).
26. B. Busser, L. Sancey, E. Brambilla, J. L. Coll, A. Hurbin, The multiple roles of amphiregulin in human cancer. Biochimica et biophysica acta 1816, 119-131 (2011); published online EpubDec (10.1016/j.bbcan.2011.05.003).
27. N. Yang, C. D. Morrison, P. Liu, J. Miecznikowski, W. Bshara, S. Han, Q. Zhu, A. R. Omilian, X. Li, J. Zhang, TAZ induces growth factor-independent proliferation through activation of EGFR ligand amphiregulin. Cell cycle 11, 2922-2930 (2012); published online EpubAug 1 (10.4161/cc.21386).
28. Y. L. Hsu, P. L. Kuo, C. C. Lin, Proliferative inhibition, cell-cycle dysregulation, and induction of apoptosis by ursolic acid in human non-small cell lung cancer A549 cells. Life sciences 75, 2303-2316 (2004); published online EpubSep 24 (10.1016/j.lfs.2004.04.027).
29. S. Shishodia, S. Majumdar, S. Banerjee, B. B. Aggarwal, Ursolic acid inhibits nuclear factor-kappaB activation induced by carcinogenic agents through suppression of IkappaBalpha kinase and p65 phosphorylation: correlation with down-regulation of cyclooxygenase 2, matrix metalloproteinase 9, and cyclin D1. Cancer research 63, 4375-4383 (2003); published online EpubAug 1
30. P. O. Harmand, R. Duval, C. Delage, A. Simon, Ursolic acid induces apoptosis through mitochondrial intrinsic pathway and caspase-3 activation in M4Beu melanoma cells. International journal of cancer. Journal international du cancer 114, 1-11 (2005); published online EpubMar 10 (10.1002/ijc.20588).
31. Y. Yie, S. Zhao, Q. Tang, F. Zheng, J. Wu, L. Yang, S. Deng, S. S. Hann, Ursolic acid inhibited growth of hepatocellular carcinoma HepG2 cells through AMPKalpha-mediated reduction of DNA methyltransferase 1. Molecular and cellular biochemistry 402, 63-74 (2015); published online EpubApr (10.1007/s11010-014-2314-x).
32. S. Prasad, V. R. Yadav, B. Sung, S. Reuter, R. Kannappan, A. Deorukhkar, P. Diagaradjane, C. Wei, V. Baladandayuthapani, S. Krishnan, S. Guha, B. B. Aggarwal, Ursolic acid inhibits growth and metastasis of human colorectal cancer in an orthotopic nude mouse model by targeting multiple cell signaling pathways: chemosensitization with capecitabine. Clinical cancer research : an official journal of the American Association for Cancer Research 18, 4942-4953 (2012); published online EpubSep 15 (10.1158/1078-0432.CCR-11-2805).
33. Y. Zhang, C. Kong, Y. Zeng, L. Wang, Z. Li, H. Wang, C. Xu, Y. Sun, Ursolic acid induces PC-3 cell apoptosis via activation of JNK and inhibition of Akt pathways in vitro. Molecular carcinogenesis 49, 374-385 (2010); published online EpubApr (10.1002/mc.20610).
34. G. Chadalapaka, I. Jutooru, A. McAlees, T. Stefanac, S. Safe, Structure-dependent inhibition of bladder and pancreatic cancer cell growth by 2-substituted glycyrrhetinic and ursolic acid derivatives. Bioorganic & medicinal chemistry letters 18, 2633-2639 (2008); published online EpubApr 15 (10.1016/j.bmcl.2008.03.031).
35. E. K. Yim, M. J. Lee, K. H. Lee, S. J. Um, J. S. Park, Antiproliferative and antiviral mechanisms of ursolic acid and dexamethasone in cervical carcinoma cell lines. International journal of gynecological cancer : official journal of the International Gynecological Cancer Society 16, 2023-2031 (2006); published online EpubNov-Dec (10.1111/j.1525-1438.2006.00726.x).
36. J. H. Baek, Y. S. Lee, C. M. Kang, J. A. Kim, K. S. Kwon, H. C. Son, K. W. Kim, Intracellular Ca2+ release mediates ursolic acid-induced apoptosis in human leukemic HL-60 cells. International journal of cancer. Journal international du cancer 73, 725-728 (1997); published online EpubNov 27
37. D. Es-Saady, A. Simon, C. Jayat-Vignoles, A. J. Chulia, C. Delage, MCF-7 cell cycle arrested at G1 through ursolic acid, and increased reduction of tetrazolium salts. Anticancer research 16, 481-486 (1996); published online EpubJan-Feb
38. M. T. Huang, C. T. Ho, Z. Y. Wang, T. Ferraro, Y. R. Lou, K. Stauber, W. Ma, C. Georgiadis, J. D. Laskin, A. H. Conney, Inhibition of skin tumorigenesis by rosemary and its constituents carnosol and ursolic acid. Cancer research 54, 701-708 (1994); published online EpubFeb 1
39. S. J. Yang, C. Y. Chen, G. D. Chang, H. C. Wen, C. Y. Chen, S. C. Chang, J. F. Liao, C. H. Chang, Activation of Akt by Advanced Glycation End Products (AGEs): Involvement of IGF-1 Receptor and Caveolin-1. PloS one 8, (2013); published online EpubMar 5 (ARTN e58100 10.1371/journal.pone.0058100).
40. C. Y. Lin, C. Huo, L. K. Kuo, R. A. Hiipakka, R. B. Jones, H. P. Lin, Y. W. Hung, L. C. Su, J. C. Tseng, Y. Y. Kuo, Y. L. Wang, Y. Fukui, Y. H. Kao, J. M. Kokontis, C. C. Yeh, L. Y. Chen, S. D. Yang, H. H. Fu, Y. W. Chen, K. K. C. Tsai, J. Y. Chang, C. P. Chuu, Cholestane-3 beta, 5 alpha, 6 beta-triol Suppresses Proliferation, Migration, and Invasion of Human Prostate Cancer Cells. PloS one 8, (2013); published online EpubJun 13 (ARTN e65734 10.1371/journal.pone.0065734).
41. H. C. Wen, C. P. Chuu, C. Y. Chen, S. G. Shiah, H. J. Kung, K. L. King, L. C. Su, S. C. Chang, C. H. Chang, Elevation of Soluble Guanylate Cyclase Suppresses Proliferation and Survival of Human Breast Cancer Cells. PloS one 10, (2015); published online EpubApr 30 (ARTN e0125518 10.1371/journal.pone.0125518).
42. Z. J. Chen, M. Vetter, D. N. Che, S. G. Liu, M. L. Tsai, C. H. Chang, The bradykinin/soluble guanylate cyclase signaling pathway is impaired in androgen-independent prostate cancer cells. Cancer letters 177, 181-187 (2002); published online EpubMar 28 (Pii S0304-3835(01)00788-1 Doi 10.1016/S0304-3835(01)00788-1).
43. M. Bartucci, R. Dattilo, C. Moriconi, A. Pagliuca, M. Mottolese, G. Federici, A. Di Benedetto, M. Todaro, G. Stassi, F. Sperati, M. I. Amabile, E. Pilozzi, M. Patrizii, M. Biffoni, M. Maugeri-Sacca, S. Piccolo, R. De Maria, TAZ is required for metastatic activity and chemoresistance of breast cancer stem cells. Oncogene 34, 681-690 (2015); published online EpubFeb 5 (Doi 10.1038/Onc.2014.5).
44. E. K. Sloan, K. L. Stanley, R. L. Anderson, Caveolin-1 inhibits breast cancer growth and metastasis. Oncogene 23, 7893-7897 (2004); published online EpubOct 14 (DOI 10.1038/sj.onc.1208062).
45. F. Crea, L. Sun, A. Mai, Y. T. Chiang, W. L. Farrar, R. Danesi, C. D. Helgason, The emerging role of histone lysine demethylases in prostate cancer. Mol Cancer 11, (2012); published online EpubAug 6 (Artn 52 Doi 10.1186/1476-4598-11-52).
46. M. K. Shanmugam, K. A. Manu, T. H. Ong, L. Ramachandran, R. Surana, P. Bist, L. H. K. Lim, A. P. Kumar, K. M. Hui, G. Sethi, Inhibition of CXCR4/CXCL12 signaling axis by ursolic acid leads to suppression of metastasis in transgenic adenocarcinoma of mouse prostate model. International Journal of Cancer 129, 1552-1563 (2011); published online EpubOct 1 (Doi 10.1002/Ijc.26120).
47. T. Moroishi, C. G. Hansen, K. L. Guan, The emerging roles of YAP and TAZ in cancer. Nature Reviews Cancer 15, 73-79 (2015); published online EpubFeb (Doi 10.1038/Nrc3876).
48. H. Y. Zhou, A. S. T. Wong, Activation of p70(S6K) induces expression of matrix metalloproteinase 9 associated with hepatocyte growth factor-mediated invasion in human ovarian cancer cells. Endocrinology 147, 2557-2566 (2006); published online EpubMay (Doi 10.1210/En.2005-1404).
49. L. A. Berven, M. F. Crouch, Cellular function of p70(S6K): A role in regulating cell motility. Immunol Cell Biol 78, 447-451 (2000); published online EpubAug (DOI 10.1046/j.1440-1711.2000.00928.x).
50. J. Gumulec, J. Sochor, M. Hlavna, M. Sztalmachova, S. Krizkova, P. Babula, R. Hrabec, A. Rovny, V. Adam, T. Eckschlager, R. Kizek, M. Masarik, Caveolin-1 as a potential high-risk prostate cancer biomarker. Oncology reports 27, 831-841 (2012); published online EpubMar (Doi 10.3892/Or.2011.1587).
51. S. Luanpitpong, S. J. Talbott, Y. Rojanasakul, U. Nimmannit, V. Pongrakhananon, L. Y. Wang, P. Chanvorachote, Regulation of Lung Cancer Cell Migration and Invasion by Reactive Oxygen Species and Caveolin-1. Journal of Biological Chemistry 285, 38832-38840 (2010); published online EpubDec (DOI 10.1074/jbc.M110.124958).
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *