帳號:guest(3.137.178.81)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):張瓊如
作者(外文):Chang, Chiung Ju
論文名稱(中文):含二茂鐵之超分子衍生物及高分子膜的光引導之機械運動
論文名稱(外文):Photo-induced Mechanical Motion of Ferrocene Containing Rotaxane Crystals and Polymer Film
指導教授(中文):堀江正樹
指導教授(外文):Masaki Horie
口試委員(中文):蘇安仲
游進陽
口試委員(外文):Su, An Chung
Yu, Chin Yang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:102080594
出版年(民國):105
畢業學年度:104
語文別:英文
論文頁數:92
中文關鍵詞:二茂鐵高分子薄膜超分子機械式運動
外文關鍵詞:Photo-induced mechanical motionFerroceneRotaxanePolymer
相關次數:
  • 推薦推薦:0
  • 點閱點閱:45
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
在光激發產物之機械式運動中,超分子化學中的結晶態能夠提供更直接的方法。因此,超分子化學的結晶態被利用於分子機械中成為了近幾年的研究焦點。在本論文中,第二章節描述了我們欲合成的超分子結構以及最適化之合成過程,將可吸收雷射之顏料香豆素120結合我們原來之化合物以提高吸收光之效率。藉由氫原子之核磁共振法以及高解析質譜儀分析合成之產物,以及使用偏光顯微鏡觀測雷射光激發此產物之機械式運動,進一步了解它對特定波長光的特質表現。在第三章節中,由光激發之機械式運動不再以超分子為研究對象,轉而利用高分子薄膜為基質並結合可吸收光波長445 nm之二茂鐵為光吸收者。此產物之基本機械式運動先以數值分析並歸納整理出產物之性質,而後以不同的條件狀況使之展演多樣化之機械式運動。
Supramolecular photochemistry in crystal state leads to more direct ways of making motions than liquid or thin film states, therefore crystalline supramolecules play essential roles in the photo-induced mechanical motions of molecular machines. Supramolecules involve molecular machines with flexibility, leading to various potential applications. In Chapter 2, design and synthesis of photo-responsive supramolecular pseudorotaxanes are reported. These pseudorotaxanes consist of the ferrocene-containing ammonium cation as an axle molecule and the novel ring molecule having dibenzo[24]crown-8 (DB24C8) with a pendant laser dye. For efficient energy conversion from light to a mechanical motion of crystals of the pseudorotaxanes, coumarin 120 is selected as the laser dye coupled with DB24C8. In the synthesis of the ring molecule, various reaction conditions are attempted changing temperature, solvent, reaction time, and concentration of reactants. After complexation of the new ring molecule and various ferrocene-containing axle molecules in chlorinated solvent such as dichloromethane, crystallization is carried out, in which various crystallization conditions are applied. Obtained compounds are identified by 1H NMR and fast atom bombardment (FAB) mass spectrometry. The photo-mechanical properties of the pseudorotaxanes crystals are characterized by polarizing optical microscopy (POM) with blue laser activation at 405 nm and 445 nm. The new pseudorotaxane crystal comprising DB24C8 with coumarin 120 pendant shows 2 times higher sensitivity to the laser power compared to that without coumarin. Two models are proposed to explain this unique system.


In Chapter 3, the new actuating system composed of the combination of polymerfilms and photo-sensitizer is reported. Here poly(n-butyl methacrylate) and ferroceneare used as the polymer matrix and the photo-sensitizer, respectively . The free-standing polymer-ferrocene films are prepared from chloroform solutions of their mixtures varying concentrations of the components and composition ratios, casted on glass plates, Teflon films or petri dishes. The photo-induced expansion motions are observed for the free-standing films. Some elementary properties of the films are established via the measurement of their area changes in adjustment of controllable factors. To further observation, we apply numerical analysis that is used for crystals. In addition, binary films, which have photo active and passive layers, are prepared leading to photo-induced bendable films. Furthermore, we demonstrate some attractive miniature mechanical machines controlled by photoirradiation which are observed using a side view camera.
Abstract..........1
Table of Content..4
Chapter 1 Introduction and aim
1.1 Introduction of light........5
1.2 mechanical motion............7
1.2.1 Supramolecular machine...7
1.2.2 Machines with actuators..17
1.3 Aims of work.................21
Chapter2 Synthesis and characterization of pseudorotaxane composed of crown ether conjugated laser dye with ferrocene......................................25
2.1 Introduction...............................25
2.2 Synthesis of pseudortaxane.................28
2.3 Optimization of synthesis of psedortaxanes.31
2.4 Optical properties.........................51
2.4.1 UV-vis absorption spectra..............51
2.4.2 Laser induced deformation of crystals of pseudorotaxanes................................53
2.5 Summary....................................54
2.6 experimental section.......................55
2.6.1 General method.........................55
2.6.2 Optical setup with laser light.........55
2.6.3 Preparation of monoformylated DB24C8...56
2.6.4 Preparation of the ring molecule conjugated to coumarin.......................................58
2.6.5 Preparation of pseudorotaxane..........61
Chapter3 Photo-induced Mechanical Motions of Polymer Film Containing Ferrocene.................................63
3.1 Introduction.....................................63
3.2 Preparation off ferrocene contained polymer film.67
3.3 Tests of basic properties........................70
3.4 Interesting demonstration........................80
3.5 Experimental section.............................89
3.5.1 Optical setup with laser light...............89
3.5.2 Preparation of polymer films containing ferrocene
.............................................90
Chapter4 Conclusions.................................91
Reference............................................92

1. Lehn, J.M., Science, 2002. 295, 2400.
2. Mattia, E. and S. Otto, Nature Nanotech., 2015. 10, 111.
3. Chichak, K.S., et al., Science, 2004. 304, 1308.
4. Hagan, M.F., O.M. Elrad, and R.L. Jack, J. Chem. Phys., 2011. 135, 104115.
5. a) Korevaar, P.A., et al., Nature, 2012. 481, 492; b) Ogi, S., et al., Nature Chem.,
2014. 6, 188.
6. Yamaguchi, N. (1999), ''Supramolecular Assemblies: Dendrimers, Linear Arrays, and Polypseudorotaxanes'', Unpublished doctoral dissertation, Virginia Tech, Blacksburg
7. Browne, W.R. and B.L. Feringa, Nature Nanotech., 2006. 1, 25.
8. Armağan Koçer, M.W., Wim Meijberg, and Ben L. Feringa, Science, 2005. 309,
755.
9. Leigh, D.A., et al., Nature, 2003. 424, 174.
10. Garcia-Garibay, M.A., Proc. Natl. Acad. Sci. USA, 2005. 102, 10771.
11. Zhang, L., et al., Nature communications, 2015. 6, 7429.
12. Christopher J. Barrett,et al., Soft Matter, 2007.
13. H. Menzel, B.W., and M. L. Hallensleben, 1992.
14. Sastry, M., et al., The Journal of Physical Chemistry , 1997. 101, 4954.
15. Barrett, C.J., et al., Soft Matter, 2007. 3, 1249.
16. Hogan, P.M., A.R. Tajbakhsh, and E.M. Terentjev, Physical review. E, Statistical,
nonlinear, and soft matter physics, 2002. 65, 041720.
17. Ramamurthy, V., S. Jockusch, and M. Porel, Langmuir, 2015. 31, 5554.
18. a) Horie, M., et al., J. Am. Chem. Soc., 2012. 134, 17932;
b) Horie, M., et al.,Angew.. Chem. Int. Ed., 2007. 46, 4983.
19. Shankarling, G.S. and K.J. Jarag, Resonance, 2010. 15, 804.
20. Hyde, E.M., B.L. Shaw, and I. Shepherd, J. Chem. Soc., Dalton Trans., 1978.
1696.
21. Shen, X., et al., Cryst. Eng. Commun., 2015. 17, 4637.
22. V. Christopher, et al., International Journal of Chemistry and Materials Research, 2015,3,53
23. Koerner, H., et al., Materials Today, 2008. 11, 34.
24. Camacho-Lopez, M., et al., Nature materials, 2004. 3, 307.
25. Muraoka, T., K. Kinbara, and T. Aida, Nature, 2006. 440, 512.
26. Mizutani, Y., Y. Otani, and N. Umeda, Optical Review, 2008. 15, 162.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *