帳號:guest(3.129.194.106)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林家緯
作者(外文):Lin, Chia Wei
論文名稱(中文):抗菌胜肽SMAP-29與鉤端螺旋體菌外膜脂蛋白LipL32之交互作用
論文名稱(外文):The interaction of antimicrobial peptide SMAP-29 and lipoprotein, LipL32 from Leptospira
指導教授(中文):孫玉珠
指導教授(外文):Sun, Yuh Ju
口試委員(中文):藍忠昱
蕭傳鐙
口試委員(外文):Lan, Chung Yu
Hsiao, Chwan Deng
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生物資訊與結構生物研究所
學號:102080591
出版年(民國):104
畢業學年度:103
語文別:英文
論文頁數:58
中文關鍵詞:抗菌胜肽鉤端螺旋體菌
外文關鍵詞:antimicrobial peptideLeptospira
相關次數:
  • 推薦推薦:0
  • 點閱點閱:32
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
鉤端螺旋體病是一種好發於亞熱帶地區的傳染性疾病,屬於人畜共通感染的疾病,鉤端螺旋體菌主要感染於人類的腎臟並造成急性腎衰竭。而鉤端螺旋體菌為病原菌的一種並且是造成鉤端螺旋體病發生的原因,其外觀呈現細桿螺旋狀並含有鞭毛。LipL32脂蛋白是在鉤端螺旋體菌外膜上表現量最多的脂蛋白,並含有一段高度保留性的[LVI][ASTVI][GAS][C]區域稱之為lipobox,此lipobox區域上的cysteine胺基酸通常會經由脂肪酸的修飾增加蛋白與細胞膜的結合性。之前我們實驗室已經決定LipL32脂蛋白結構(PDB code: 2WFK)。然而目前對於鉤端螺旋體菌感染宿主的機制仍然不完全了解。先前已經有文獻發現cathelicidin類的抗菌胜肽BMAP-28,SMAP-29和LL-37對於鉤端螺旋體菌有著抑制其移動和生長的能力。本篇研究想要知道抗菌胜肽(BMAP-28,SMAP-29和LL-37)跟LipL32脂蛋白交互作用的機制為何,我們從定性的生物素蛋白沉澱實驗(biotin pull-down assay)和定量的等溫滴定微量熱儀(isothermal titration calorimetry)的分析結果發現SMAP-29抗菌胜肽與LipL32脂蛋白有交互作用。並利用陽離子交換層析管柱分離得到SMAP-29與LipL32脂蛋白複合物。藉由結晶學方法進行結構與功能的研究探討SMAP-29和LipL32脂蛋白之間可能的交互作用,這些結果將有助於未來在治療鉤端螺旋體病的研究發展。
Leptospirosis is widespread, zoonotic and cause human acute renal failure. The pathogen, Leptospira, which cause leptospirosis, is a thin and spiral-shaped bacterium with flagella. LipL32 is the most abundant lipoprotein of Leptospira, and the cysteine of lipobox “[LVI][ASTVI][GAS][C]” is lipidated by fatty acids. The three-dimensional structure of LipL32 has been solved in our laboratory (PDB code: 2WFK). However, the infection mechanism of Leptospira is still unclear. Recently, report indicated that Leptospira growth can be inhibited by cathelicidin-derived antimicrobial peptides (AMPs) which originally found in mammals, such as BMAP-28, SMAP-29 and LL-37, etc. In this study, the antimicrobial peptides (BMAP-28, SMAP-29 and LL-37) were selected to study the possible interaction with LipL32. We have successfully found that SMAP-29 may interact with LipL32 by biotin pull-down assay and isothermal titration calorimetry (ITC) assay. The SMAP-29-LipL32 complex was isolated by cation exchange chromatography but the mount of complex is few. Based on the crystallization or structural and functional studies, the specific interaction of SMAP-29 and LipL32 can be identified. However, BMAP-28 and LL-37 show no interaction with LipL32. From these results, SMAP-29 would be more benefited in drug development for treating leptospirosis.
中文摘要 I
Abstract II
誌謝 III
Chapter 1 1
Introduction 1
Chapter 2 7
Materials and methods 7
2.1 Expression and purification 7
2.2 Antimicrobial Peptides 8
2.3 Size-exclusion chromatography 8
2.4 Matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry 9
2.5 Circular dichroism spectroscopy 9
2.6 Biotin pull-down assay 10
2.7 Western blotting analysis 11
2.8 Isothermal Titration Calorimetry (ITC) 12
2.9 Ion exchange chromatography 12
2.9.1 Anion exchange chromatography 12
2.9.2 Cation exchange chromatography 13
2.9.3 Ion exchange chromatography analysis 14
2.10 Molecular docking 14
Chapter 3 16
Results and Discussion: 16
3.1 Characterization, Expression and Purification of LipL32 16
3.2 Characterization of antimicrobial peptides 17
3.3 Biotin pull-down assay analysis of interaction between LipL32 and AMPs 18
3.4 SMAP-29 and LipL32 interaction confirmed by Isothermal Titration Calorimetry (ITC) 20
3.5 SMAP-29-LipL32 complex separated by ion exchange chromatography 21
3.6 The structure of SMAP-29-LipL32 complex by molecular docking 23
Chapter 4 26
Conclusions 26
Tables and Figures 30
Reference 51
1. Levett, P. N. (2001) Leptospirosis. Clinical microbiology reviews 14, 296-326
2. Adler, B., and de la Pena Moctezuma, A. (2010) Leptospira and leptospirosis. Veterinary microbiology 140, 287-296
3. Bourhy, P., Herrmann Storck, C., Theodose, R., Olive, C., Nicolas, M., Hochedez, P., Lamaury, I., Zinini, F., Bremont, S., Landier, A., Cassadou, S., Rosine, J., and Picardeau, M. (2013) Serovar diversity of pathogenic Leptospira circulating in the French West Indies. PLoS neglected tropical diseases 7, e2114
4. Hsieh, W. J., and Pan, M. J. (2004) Identification Leptospira santarosai serovar shermani specific sequences by suppression subtractive hybridization. FEMS microbiology letters 235, 117-124
5. Evangelista, K. V., and Coburn, J. (2010) Leptospira as an emerging pathogen: a review of its biology, pathogenesis and host immune responses. Future microbiology 5, 1413-1425
6. Bharti, A. R., Nally, J. E., Ricaldi, J. N., Matthias, M. A., Diaz, M. M., Lovett, M. A., Levett, P. N., Gilman, R. H., Willig, M. R., Gotuzzo, E., and Vinetz, J. M. (2003) Leptospirosis: a zoonotic disease of global importance. The Lancet Infectious Diseases 3, 757-771
7. Yang, C. W. (2007) Leptospirosis renal disease: understanding the initiation by Toll-like receptors. Kidney international 72, 918-925
8. Goncalves-de-Albuquerque, C. F., Burth, P., Silva, A. R., Younes-Ibrahim, M., Castro-Faria-Neto, H. C., and Castro-Faria, M. V. (2012) Leptospira and inflammation. Mediators of inflammation 2012, 317950
9. Yang, C. W., Wu, M. S., and Pan, M. J. (2001) Leptospirosis renal disease. Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association 16 Suppl 5, 73-77
10. Daher Ede, F., de Abreu, K. L., and da Silva Junior, G. B. (2010) Leptospirosis-associated acute kidney injury. Jornal brasileiro de nefrologia : 'orgao oficial de Sociedades Brasileira e Latino-Americana de Nefrologia 32, 400-407
11. Monahan, A. M., Callanan, J. J., and Nally, J. E. (2009) Review paper: Host-pathogen interactions in the kidney during chronic leptospirosis. Veterinary pathology 46, 792-799
12. Haake, D. A., and Matsunaga, J. (2010) Leptospira: a spirochaete with a hybrid outer membrane. Molecular microbiology 77, 805-814
13. Haake, D. A., Chao, G., Zuerner, R. L., Barnett, J. K., Barnett, D., Mazel, M., Matsunaga, J., Levett, P. N., and Bolin, C. A. (2000) The leptospiral major outer membrane protein LipL32 is a lipoprotein expressed during mammalian infection. Infection and immunity 68, 2276-2285
14. Barnett, J. K., Barnett, D., Bolin, C. A., Summers, T. A., Wagar, E. A., Cheville, N. F., Hartskeerl, R. A., and Haake, D. A. (1999) Expression and distribution of leptospiral outer membrane components during renal infection of hamsters. Infection and immunity 67, 853-861
15. Yang, C. W. (2002) The Leptospira Outer Membrane Protein LipL32 Induces Tubulointerstitial Nephritis-Mediated Gene Expression in Mouse Proximal Tubule Cells. Journal of the American Society of Nephrology 13, 2037-2045
16. Yang, C. W., Hung, C. C., Wu, M. S., Tian, Y. C., Chang, C. T., Pan, M. J., and Vandewalle, A. (2006) Toll-like receptor 2 mediates early inflammation by leptospiral outer membrane proteins in proximal tubule cells. Kidney international 69, 815-822
17. Yang, C. W., Wu, M. S., Pan, M. J., Hong, J. J., Yu, C. C., Vandewalle, A., and Huang, C. C. (2000) Leptospira outer membrane protein activates NF-kappaB and downstream genes expressed in medullary thick ascending limb cells. Journal of the American Society of Nephrology : JASN 11, 2017-2026
18. Cullen, P. A., Haake, D. A., and Adler, B. (2004) Outer membrane proteins of pathogenic spirochetes. FEMS Microbiology Reviews 28, 291-318
19. Haake, D. A., and Matsunaga, J. (2002) Characterization of the Leptospiral Outer Membrane and Description of Three Novel Leptospiral Membrane Proteins. Infection and immunity 70, 4936-4945
20. Kovacs-Simon, A., Titball, R. W., and Michell, S. L. (2011) Lipoproteins of bacterial pathogens. Infection and immunity 79, 548-561
21. Tseng, C. L., and Leng, C. H. (2012) Influence of medium components on the expression of recombinant lipoproteins in Escherichia coli. Applied microbiology and biotechnology 93, 1539-1552
22. Babu, M. M., Priya, M. L., Selvan, A. T., Madera, M., Gough, J., Aravind, L., and Sankaran, K. (2006) A database of bacterial lipoproteins (DOLOP) with functional assignments to predicted lipoproteins. Journal of bacteriology 188, 2761-2773
23. Cullen, P. A. (2002) Global Analysis of Outer Membrane Proteins from Leptospira interrogans Serovar Lai. Infection and immunity 70, 2311-2318
24. Murray, G. L., Srikram, A., Hoke, D. E., Wunder, E. A., Jr., Henry, R., Lo, M., Zhang, K., Sermswan, R. W., Ko, A. I., and Adler, B. (2009) Major surface protein LipL32 is not required for either acute or chronic infection with Leptospira interrogans. Infection and immunity 77, 952-958
25. Hoke, D. E., Egan, S., Cullen, P. A., and Adler, B. (2008) LipL32 is an extracellular matrix-interacting protein of Leptospira spp. and Pseudoalteromonas tunicata. Infection and immunity 76, 2063-2069
26. Hauk, P., Macedo, F., Romero, E. C., Vasconcellos, S. A., de Morais, Z. M., Barbosa, A. S., and Ho, P. L. (2008) In LipL32, the major leptospiral lipoprotein, the C terminus is the primary immunogenic domain and mediates interaction with collagen IV and plasma fibronectin. Infection and immunity 76, 2642-2650
27. Hsu, S. H., Lo, Y. Y., Tung, J. Y., Ko, Y. C., Sun, Y. J., Hung, C. C., Yang, C. W., Tseng, F. G., Fu, C. C., and Pan, R. L. (2010) Leptospiral outer membrane lipoprotein LipL32 binding on toll-like receptor 2 of renal cells as determined with an atomic force microscope. Biochemistry 49, 5408-5417
28. Akira, S., Takeda, K., and Kaisho, T. (2001) Toll-like receptors: critical proteins linking innate and acquired immunity. Nature immunology 2, 675-680
29. Haake, D. A., Suchard, M. A., Kelley, M. M., Dundoo, M., Alt, D. P., and Zuerner, R. L. (2004) Molecular Evolution and Mosaicism of Leptospiral Outer Membrane Proteins Involves Horizontal DNA Transfer. Journal of bacteriology 186, 2818-2828
30. Guerreiro, H., Croda, J., Flannery, B., Mazel, M., Matsunaga, J., Galvao Reis, M., Levett, P. N., Ko, A. I., and Haake, D. A. (2001) Leptospiral proteins recognized during the humoral immune response to leptospirosis in humans. Infection and immunity 69, 4958-4968
31. Grassmann, A. A., Felix, S. R., dos Santos, C. X., Amaral, M. G., Seixas Neto, A. C., Fagundes, M. Q., Seixas, F. K., da Silva, E. F., Conceicao, F. R., and Dellagostin, O. A. (2012) Protection against lethal leptospirosis after vaccination with LipL32 coupled or coadministered with the B subunit of Escherichia coli heat-labile enterotoxin. Clinical and vaccine immunology : CVI 19, 740-745
32. Zasloff, M. (2002) Antimicrobial peptides of multicellular organisms. Nature 415, 389-395
33. Hancock, R. E., and Sahl, H. G. (2006) Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nature biotechnology 24, 1551-1557
34. Brogden, K. A. (2005) Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nature reviews. Microbiology 3, 238-250
35. Smith, P. A., and Romesberg, F. E. (2007) Combating bacteria and drug resistance by inhibiting mechanisms of persistence and adaptation. Nat Chem Biol 3, 549-556
36. Robinson, J. A. (2011) Protein epitope mimetics as anti-infectives. Current opinion in chemical biology 15, 379-386
37. Fjell, C. D., Hiss, J. A., Hancock, R. E., and Schneider, G. (2012) Designing antimicrobial peptides: form follows function. Nature reviews. Drug discovery 11, 37-51
38. Zasloff, M. (1987) Magainins, a class of antimicrobial peptides from Xenopus skin: isolation, characterization of two active forms, and partial cDNA sequence of a precursor. Proceedings of the National Academy of Sciences of the United States of America 84, 5449-5453
39. Sader, H. S., Fedler, K. A., Rennie, R. P., Stevens, S., and Jones, R. N. (2004) Omiganan pentahydrochloride (MBI 226), a topical 12-amino-acid cationic peptide: spectrum of antimicrobial activity and measurements of bactericidal activity. Antimicrobial agents and chemotherapy 48, 3112-3118
40. Selsted, M. E., Novotny, M. J., Morris, W. L., Tang, Y. Q., Smith, W., and Cullor, J. S. (1992) Indolicidin, a novel bactericidal tridecapeptide amide from neutrophils. The Journal of biological chemistry 267, 4292-4295
41. Zanetti, M. (2005) The role of cathelicidins in the innate host defenses of mammals. Current issues in molecular biology 7, 179-196
42. Kosciuczuk, E. M., Lisowski, P., Jarczak, J., Strzalkowska, N., Jozwik, A., Horbanczuk, J., Krzyzewski, J., Zwierzchowski, L., and Bagnicka, E. (2012) Cathelicidins: family of antimicrobial peptides. A review. Molecular biology reports 39, 10957-10970
43. Sambri, V. (2002) Comparative in vitro activity of five cathelicidin-derived synthetic peptides against Leptospira, Borrelia and Treponema pallidum. Journal of Antimicrobial Chemotherapy 50, 895-902
44. Lin, Y. M., Wu, S. J., Chang, T. W., Wang, C. F., Suen, C. S., Hwang, M. J., Chang, M. D., Chen, Y. T., and Liao, Y. D. (2010) Outer membrane protein I of Pseudomonas aeruginosa is a target of cationic antimicrobial peptide/protein. The Journal of biological chemistry 285, 8985-8994
45. Chang, T. W., Lin, Y. M., Wang, C. F., and Liao, Y. D. (2012) Outer membrane lipoprotein Lpp is Gram-negative bacterial cell surface receptor for cationic antimicrobial peptides. The Journal of biological chemistry 287, 418-428
46. Zelezetsky, I., and Tossi, A. (2006) Alpha-helical antimicrobial peptides--using a sequence template to guide structure-activity relationship studies. Biochimica et biophysica acta 1758, 1436-1449
47. Tsai, P. W., Yang, C. Y., Chang, H. T., and Lan, C. Y. (2011) Human antimicrobial peptide LL-37 inhibits adhesion of Candida albicans by interacting with yeast cell-wall carbohydrates. PloS one 6, e17755
48. Tung, J. Y., Yang, C. W., Chou, S. W., Lin, C. C., and Sun, Y. J. (2010) Calcium binds to LipL32, a lipoprotein from pathogenic Leptospira, and modulates fibronectin binding. The Journal of biological chemistry 285, 3245-3252
49. Tack, B. F., Sawai, M. V., Kearney, W. R., Robertson, A. D., Sherman, M. A., Wang, W., Hong, T., Boo, L. M., Wu, H., Waring, A. J., and Lehrer, R. I. (2002) SMAP-29 has two LPS-binding sites and a central hinge. European journal of biochemistry / FEBS 269, 1181-1189
50. Kozakov, D., Hall, D. R., Beglov, D., Brenke, R., Comeau, S. R., Shen, Y., Li, K., Zheng, J., Vakili, P., Paschalidis, I., and Vajda, S. (2010) Achieving reliability and high accuracy in automated protein docking: ClusPro, PIPER, SDU, and stability analysis in CAPRI rounds 13-19. Proteins 78, 3124-3130
51. Kozakov, D., Brenke, R., Comeau, S. R., and Vajda, S. (2006) PIPER: an FFT-based protein docking program with pairwise potentials. Proteins 65, 392-406
52. Comeau, S. R., Gatchell, D. W., Vajda, S., and Camacho, C. J. (2004) ClusPro: a fully automated algorithm for protein-protein docking. Nucleic acids research 32, W96-99
53. Comeau, S. R., Gatchell, D. W., Vajda, S., and Camacho, C. J. (2003) ClusPro: an automated docking and discrimination method for the prediction of protein complexes. Bioinformatics 20, 45-50
54. Lo, Y. Y., Hsu, S. H., Ko, Y. C., Hung, C. C., Chang, M. Y., Hsu, H. H., Pan, M. J., Chen, Y. W., Lee, C. H., Tseng, F. G., Sun, Y. J., Yang, C. W., and Pan, R. L. (2013) Essential calcium-binding cluster of Leptospira LipL32 protein for inflammatory responses through the Toll-like receptor 2 pathway. The Journal of biological chemistry 288, 12335-12344
55. Tomasinsig, L., and Zanetti, M. (2005) The cathelicidins--structure, function and evolution. Current protein & peptide science 6, 23-34
56. Skerlavaj, B., Gennaro, R., Bagella, L., Merluzzi, L., Risso, A., and Zanetti, M. (1996) Biological characterization of two novel cathelicidin-derived peptides and identification of structural requirements for their antimicrobial and cell lytic activities. The Journal of biological chemistry 271, 28375-28381
57. Johansson, J., Gudmundsson, G. H., Rottenberg, M. E., Berndt, K. D., and Agerberth, B. (1998) Conformation-dependent antibacterial activity of the naturally occurring human peptide LL-37. The Journal of biological chemistry 273, 3718-3724
58. Chuang, G. Y., Kozakov, D., Brenke, R., Comeau, S. R., and Vajda, S. (2008) DARS (Decoys As the Reference State) potentials for protein-protein docking. Biophysical journal 95, 4217-4227
59. Lottersberger, J., Guerrero, S. A., Tonarelli, G. G., Frank, R., Tarabla, H., and Vanasco, N. B. (2009) Epitope mapping of pathogenic Leptospira LipL32. Letters in applied microbiology 49, 641-645
60. Jerabek-Willemsen, M., Wienken, C. J., Braun, D., Baaske, P., and Duhr, S. (2011) Molecular interaction studies using microscale thermophoresis. Assay and drug development technologies 9, 342-353
61. Patching, S. G. (2014) Surface plasmon resonance spectroscopy for characterisation of membrane protein-ligand interactions and its potential for drug discovery. Biochimica et biophysica acta 1838, 43-55
62. Kuo, H.-L., Lin, C.-L., and Huang, C.-C. (2003) Reversible Thick Ascending Limb Dysfunction and Aseptic Meningitis Syndrome: Early Manifestation in Two Leptospirosis Patients. Renal Failure 25, 639-646
63. Wu, M. S., Yang, C. W., Pan, M. J., Chang, C. T., and Chen, Y. C. (2004) Reduced renal Na+-K+-Cl- co-transporter activity and inhibited NKCC2 mRNA expression by Leptospira shermani: from bed-side to bench. Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association 19, 2472-2479
64. Walkenhorst, W. F., Klein, J. W., Vo, P., and Wimley, W. C. (2013) pH Dependence of microbe sterilization by cationic antimicrobial peptides. Antimicrobial agents and chemotherapy 57, 3312-3320
65. Friedrich, C., Scott, M. G., Karunaratne, N., Yan, H., and Hancock, R. E. (1999) Salt-resistant alpha-helical cationic antimicrobial peptides. Antimicrobial agents and chemotherapy 43, 1542-1548
66. Shin, S. Y., Yang, S. T., Park, E. J., Eom, S. H., Song, W. K., Kim, Y., Hahm, K. S., and Kim, J. I. (2002) Salt resistance and synergistic effect with vancomycin of alpha-helical antimicrobial peptide P18. Biochemical and biophysical research communications 290, 558-562
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *