帳號:guest(3.12.36.175)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):李偉綸
作者(外文):Li, Wei Luen
論文名稱(中文):高折射率水膠於組織澄清與三維顯微影像技術之應用
論文名稱(外文):Transparent hydrogel with high refractive index for tissue clearing and 3-D gastrointestinal microscopy
指導教授(中文):湯學成
指導教授(外文):Tang, Shiue Cheng
口試委員(中文):陳令儀
莊峻鍠
口試委員(外文):Chen, Lin yi
Juang, Jyuhn Huarng
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生物科技研究所
學號:102080578
出版年(民國):104
畢業學年度:104
語文別:中文
論文頁數:46
中文關鍵詞:三維影像水膠光學澄清組織澄清折射率
外文關鍵詞:3-D microscopyhydrogeloptical clearingtissue clearingrefractive index
相關次數:
  • 推薦推薦:0
  • 點閱點閱:371
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
組織透明化是觀察組織樣本的重要關鍵。而造成組織樣本不透明的主要原因是由於構成生物組織的蛋白質與脂質其折射率較水分子高,造成組織內部分子之間的折射率不均勻,導致光學散射。在光散射的環境下,以顯微鏡觀察厚片組織樣本時(>20 μm),無法具有良好的光學穿透度與解析度,造成樣本深層組織之影像擷取困難。為了減少組織內的散射,在本實驗中我們製備高折射率水膠,並以高折射率水膠包埋組織,使組織的光學穿透度上升,並應用三維顯微影像技術,觀察透明化之後的消化道組織樣本。
高折射率水膠是由丙烯醯胺單體、甲基丙烯醯胺單體、與交聯劑-三(乙二醇)二甲丙烯酸酯混合而成的水溶液,經由紫外光照射聚合之後所產生的高分子水膠(折射率為1.50 ;水的折射率為1.33)。在本實驗中我們藉由測試高折射率水膠對於水溶液中的蛋白質與脂質(牛奶溶液),以及動物組織(小鼠大腸與胰臟切片樣本)之光學穿透度,來證明高折射率水膠的組織澄清能力。當以螢光分子標記高折射率水膠組織包埋樣本時,由於組織的透明度增加,在共軛焦顯微鏡下,組織深層的螢光分子能夠被有效地激發並產生螢光訊號,使螢光影像能夠清晰且精確的呈現,得以建構組織之三維影像。
在本實驗中,我們利用高折射率水膠的光學穿透性質以及組織澄清功能與三維顯微影像技術結合,建構消化道組織之三維影像。此外,由於水膠包埋可將檢體固定於水膠立方體之中,使組織樣本有固定的方位與相對座標位置。此一特性,可促成三維共軛焦顯微鏡的光學切面方向,與傳統病理切片的刀切以及觀察方向一致,使我們能在完成非破壞性三維顯微影像擷取之後,以同一組織樣本進行病理組織切片、染色與二維影像擷取,完成三維共軛焦顯微鏡影像與病理二維影像之對位整合。
Background and Aims: Animal tissues are generally opaque. The opacity is derived from the higher refractive indexes of the tissue constituents, mainly the proteins and lipids, than that of the water molecules, causing scattering and creating difficulties in high-resolution deep-tissue microscopy. To reduce tissue scattering, in this research we aim to synthesize a high-refractive-index hydrogel for tissue permeabilization and embedding to prepare transparent gastrointestinal specimens for 3-dimensional (3-D) microscopy.

Methods and Results: An aqueous solution of the monomers acrylamide and methacrylamide with the crosslinker triethylene glycol dimethacrylate is used to synthesize the AMEGA hydrogel with high refractive index (RI at 1.50) through ultraviolet polymerization. The optical-clearing capacity of AMEGA hydrogel is demonstrated by its compatibility with the lipids and proteins in solution (milk) and with tissue (intestinal and pancreatic biopsies), forming transparent gel-milk and gel-tissue complexes after ultraviolet radiation. Importantly, when the intestinal and pancreatic biopsies were labeled with fluorescent probes and examined by confocal microscopy, efficient fluorescence excitation and emission from the gel-tissue complex were achieved, facilitating in-depth 3-D visualization of the tissue microstructure with high definition.

Conclusion: The combination of hydrogel-based optical clearing and 3-D microscopy for penetrative tissue imaging does not require microtome sectioning and provides a useful tool for 3-D presentation and analysis of the gastrointestinal tissues in an integrated fashion.
目錄

中文摘要........i
英文摘要........iii
縮寫對照表......v
圖目錄..........vi
1. 文獻回顧.....1
1.1 組織光學顯微影像: 二維與三維顯微影像之成像技術.....1
1.2 改良腸道與胰臟組織三維顯微影像之光學性質...........2
1.3 水膠...............................................4
1.3.1 水膠的交聯性質...................................5
1.3.1.1 化學性交聯.....................................6
1.3.2 高折射率水膠.....................................7
1.4 研究動機...........................................8
2. 實驗材料與方法......................................9
2.1 高折射率水膠合成...............................9
2.2 高折射率水膠之穿透度測量...........................9
2.2.1 高折射率水膠減少溶液光學散射實驗.................9
2.2.2 高折射率水膠減少組織光學散射實驗.................10
2.3 小鼠消化道組織澄清實驗.............................10
2.4 實驗動物...........................................11
2.5 以染劑灌流小鼠進行血管染色.........................11
2.5.1 染劑配製.........................................11
2.5.2 小鼠灌流.........................................12
2.6 組織染色...........................................13
2.6.1 組織螢光免疫染色.................................13
2.6.2 組織螢光染劑染色.................................13
2.7 封片...............................................14
2.8 共軛焦顯微鏡.......................................14
2.9 影像投影和分析.....................................14
2.10 實驗材料與儀器....................................15
3. 結果與討論..........................................17
3.1 合成高折射率水膠...................................17
3.2 高折射率水膠光學澄清效果之定性與定量分析:
牛奶膠體光學穿透試.................................20
3.3 紫外光照射下,高折射率水膠固化及穩定度之動力學分析.23
3.4 高折射率水膠組織澄清效果: 水膠組織包埋試驗.........26
3.5 高折射率水膠組織澄清技術應用於三維顯微組織學.......31
3.6 三維顯微組織學與二維組織學之整合...................37
4. 結論................................................40
5. 未來工作............................................42
6. 參考文獻............................................43
1. Edler, D., et al., Immunohistochemically detected thymidylate synthase in colorectal cancer: an independent prognostic factor of survival. Clin Cancer Res, 2000. 6(2): p. 488-92.
2. Conchello, J.A. and J.W. Lichtman, Optical sectioning microscopy. Nat Methods, 2005. 2(12): p. 920-31.
3. Vargas, O., et al., Use of an agent to reduce scattering in skin. Lasers in Surgery and Medicine, 1999. 24(2): p. 133-141.
4. Bui, A.K., et al., Revisiting Optical Clearing With Dimethyl Sulfoxide (DMSO). Lasers in Surgery and Medicine, 2009. 41(2): p. 142-148.
5. Zhu, D., et al., Recent progress in tissue optical clearing. Laser Photon Rev, 2013. 7(5): p. 732-757.
6. Hama, H., et al., Scale: a chemical approach for fluorescence imaging and reconstruction of transparent mouse brain. Nat Neurosci, 2011. 14(11): p. 1481-8.
7. Ke, M.T., S. Fujimoto, and T. Imai, SeeDB: a simple and morphology-preserving optical clearing agent for neuronal circuit reconstruction. Nat Neurosci, 2013. 16(8): p. 1154-61.
8. Chung, K., et al., Structural and molecular interrogation of intact biological systems. Nature, 2013. 497(7449): p. 332-7.
9. Erturk, A., et al., Three-dimensional imaging of the unsectioned adult spinal cord to assess axon regeneration and glial responses after injury. Nat Med, 2012. 18(1): p. 166-71.
10. Hua, T.E., et al., 3-D neurohistology of transparent tongue in health and injury with optical clearing. Front Neuroanat, 2013. 7: p. 36.
11. Oldham, M., et al., Optical clearing of unsectioned specimens for three-dimensional imaging via optical transmission and emission tomography. J Biomed Opt, 2008. 13(2): p. 021113.
12. Fu, Y.Y. and S.C. Tang, Optical clearing facilitates integrated 3D visualization of mouse ileal microstructure and vascular network with high definition. Microvasc Res, 2010. 80(3): p. 512-21.
13. Liu, Y.A., et al., Optical clearing improves the imaging depth and signal-to-noise ratio for digital analysis and three-dimensional projection of the human enteric nervous system. Neurogastroenterol Motil, 2011. 23(10): p. e446-57.
14. Fu, Y.Y., et al., Microtome-Free 3-Dimensional Confocal Imaging Method for Visualization of Mouse Intestine With Subcellular-Level Resolution. Gastroenterology, 2009. 137(2): p. 453-465.
15. Fu, Y.Y., et al., Three-dimensional optical method for integrated visualization of mouse islet microstructure and vascular network with subcellular-level resolution. Journal of Biomedical Optics, 2010. 15(4).
16. Chiu, Y.C., et al., 3-D imaging and illustration of the perfusive mouse islet sympathetic innervation and its remodelling in injury. Diabetologia, 2012. 55(12): p. 3252-3261.
17. Tang, S.C., et al., Plasticity of Schwann cells and pericytes in response to islet injury in mice. Diabetologia, 2013. 56(11): p. 2424-34.
18. Tang, S.C., S.J. Peng, and H.J. Chien, Imaging of the islet neural network. Diabetes Obes Metab, 2014. 16 Suppl 1: p. 77-86.
19. Wang, R.K.K., et al., Investigation of optical clearing of gastric tissue immersed with hyperosmotic agents. Ieee Journal of Selected Topics in Quantum Electronics, 2003. 9(2): p. 234-242.
20. Tuchin, V.V., R.K. Wang, and A.T. Yeh, Optical clearing of tissues and cells. Journal of Biomedical Optics, 2008. 13(2).
21. Xu, X. and R.K. Wang, Synergistic effect of hyperosmotic agents of dimethyl sulfoxide and glycerol on optical clearing of gastric tissue studied with near infrared spectroscopy. Phys Med Biol, 2004. 49(3): p. 457-68.
22. Hennink, W.E. and C.F. van Nostrum, Novel crosslinking methods to design hydrogels. Adv Drug Deliv Rev, 2002. 54(1): p. 13-36.
23. Kamath, K.R. and K. Park, Biodegradable Hydrogels in Drug-Delivery. Advanced Drug Delivery Reviews, 1993. 11(1-2): p. 59-84.
24. Schacht, E.H., Polymer chemistry and hydrogel systems. Journal of Physics: Conference Series, 2004. 3: p. 22–28.
25. Hoffman, A.S., Hydrogels for biomedical applications. Adv Drug Deliv Rev, 2002. 54(1): p. 3-12.
26. Azad, A.K., et al., Chitosan membrane as a wound-healing dressing: Characterization and clinical application. Journal of Biomedical Materials Research Part B-Applied Biomaterials, 2004. 69B(2): p. 216-222.
27. Kickhofen, B., et al., Chemical and physical properties of a hydrogel wound dressing. Biomaterials, 1986. 7(1): p. 67-72.
28. Yoo, H.J. and H.D. Kim, Synthesis and properties of waterborne polyurethane hydrogels for wound healing dressings. J Biomed Mater Res B Appl Biomater, 2008. 85(2): p. 326-33.
29. Chen, J., H. Park, and K. Park, Synthesis of superporous hydrogels: hydrogels with fast swelling and superabsorbent properties. J Biomed Mater Res, 1999. 44(1): p. 53-62.
30. Jafari, B., F. Rafie, and S. Davaran, Preparation and characterization of a novel smart polymeric hydrogel for drug delivery of insulin. Bioimpacts, 2011. 1(2): p. 135-43.
31. Matsumoto, A., et al., A synthetic approach toward a self-regulated insulin delivery system. Angew Chem Int Ed Engl, 2012. 51(9): p. 2124-8.
32. Silva, A.K., et al., Growth factor delivery approaches in hydrogels. Biomacromolecules, 2009. 10(1): p. 9-18.
33. Tanigo, T., R. Takaoka, and Y. Tabata, Sustained release of water-insoluble simvastatin from biodegradable hydrogel augments bone regeneration. J Control Release, 2010. 143(2): p. 201-6.
34. Langer, R. and J.P. Vacanti, Tissue engineering. Science, 1993. 260(5110): p. 920-6.
35. Matsuo, E.S. and T. Tanaka, Patterns in Shrinking Gels. Nature, 1992. 358(6386): p. 482-485.
36. Edman, P., B. Ekman, and I. Sjoholm, Immobilization of proteins in microspheres of biodegradable polyacryldextran. J Pharm Sci, 1980. 69(7): p. 838-42.
37. Dai, W.S. and T.A. Barbari, Hydrogel membranes with mesh size asymmetry based on the gradient crosslinking of poly(vinyl alcohol). Journal of Membrane Science, 1999. 156(1): p. 67-79.
38. Peppas, N.A. and R.E. Benner, Jr., Proposed method of intracordal injection and gelation of poly (vinyl alcohol) solution in vocal cords: polymer considerations. Biomaterials, 1980. 1(3): p. 158-62.
39. Kim, Y.J., M. Ebara, and T. Aoyagi, A Smart Nanofiber Web That Captures and Releases Cells. Angewandte Chemie-International Edition, 2012. 51(42): p. 10537-10541.
40. Matsukuma, D., K. Yamamoto, and T. Aoyagi, Stimuli-responsive properties of N-isopropylacrylamide-based ultrathin hydrogel films prepared by photo-cross-linking. Langmuir, 2006. 22(13): p. 5911-5915.
41. Mitsuhiro Ebara, Y.K., Ravin Narain, Naokazu Idota, Young-Jin Kim, John M. Hoffman, Koichiro Uto, Takao Aoyagi Smart Biomaterials. NIMS Monographs. 2014: pringer Japan.
42. Li, P., et al., A polycationic antimicrobial and biocompatible hydrogel with microbe membrane suctioning ability. Nat Mater, 2011. 10(2): p. 149-56.
43. Deng, C., et al., Collagen and glycopolymer based hydrogel for potential corneal application. Acta Biomater, 2010. 6(1): p. 187-94.
44. Peppas, N.A., et al., Hydrogels in biology and medicine: From molecular principles to bionanotechnology. Advanced Materials, 2006. 18(11): p. 1345-1360.
45. Bozukova, D., et al., Hydrogel nanocomposites: a potential UV/blue light filtering material for ophthalmic lenses. J Biomater Sci Polym Ed, 2011. 22(14): p. 1947-61.
46. Huo, Y.C., H. Ketelson, and S.S. Perry, Ethylene oxide-block-butylene oxide copolymer uptake by silicone hydrogel contact lens materials. Applied Surface Science, 2013. 273: p. 472-477.
47. Zhou, C.C., et al., High Water Content Hydrogel With Super High Refractive Index. Macromolecular Bioscience, 2013. 13(11): p. 1485-1491.
48. Scaiano, J.C., K.G. Stamplecoskie, and G.L. Hallett-Tapley, Photochemical Norrish type I reaction as a tool for metal nanoparticle synthesis: importance of proton coupled electron transfer. Chemical Communications, 2012. 48(40): p. 4798-4808.

(此全文限內部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *