|
1. Edler, D., et al., Immunohistochemically detected thymidylate synthase in colorectal cancer: an independent prognostic factor of survival. Clin Cancer Res, 2000. 6(2): p. 488-92. 2. Conchello, J.A. and J.W. Lichtman, Optical sectioning microscopy. Nat Methods, 2005. 2(12): p. 920-31. 3. Vargas, O., et al., Use of an agent to reduce scattering in skin. Lasers in Surgery and Medicine, 1999. 24(2): p. 133-141. 4. Bui, A.K., et al., Revisiting Optical Clearing With Dimethyl Sulfoxide (DMSO). Lasers in Surgery and Medicine, 2009. 41(2): p. 142-148. 5. Zhu, D., et al., Recent progress in tissue optical clearing. Laser Photon Rev, 2013. 7(5): p. 732-757. 6. Hama, H., et al., Scale: a chemical approach for fluorescence imaging and reconstruction of transparent mouse brain. Nat Neurosci, 2011. 14(11): p. 1481-8. 7. Ke, M.T., S. Fujimoto, and T. Imai, SeeDB: a simple and morphology-preserving optical clearing agent for neuronal circuit reconstruction. Nat Neurosci, 2013. 16(8): p. 1154-61. 8. Chung, K., et al., Structural and molecular interrogation of intact biological systems. Nature, 2013. 497(7449): p. 332-7. 9. Erturk, A., et al., Three-dimensional imaging of the unsectioned adult spinal cord to assess axon regeneration and glial responses after injury. Nat Med, 2012. 18(1): p. 166-71. 10. Hua, T.E., et al., 3-D neurohistology of transparent tongue in health and injury with optical clearing. Front Neuroanat, 2013. 7: p. 36. 11. Oldham, M., et al., Optical clearing of unsectioned specimens for three-dimensional imaging via optical transmission and emission tomography. J Biomed Opt, 2008. 13(2): p. 021113. 12. Fu, Y.Y. and S.C. Tang, Optical clearing facilitates integrated 3D visualization of mouse ileal microstructure and vascular network with high definition. Microvasc Res, 2010. 80(3): p. 512-21. 13. Liu, Y.A., et al., Optical clearing improves the imaging depth and signal-to-noise ratio for digital analysis and three-dimensional projection of the human enteric nervous system. Neurogastroenterol Motil, 2011. 23(10): p. e446-57. 14. Fu, Y.Y., et al., Microtome-Free 3-Dimensional Confocal Imaging Method for Visualization of Mouse Intestine With Subcellular-Level Resolution. Gastroenterology, 2009. 137(2): p. 453-465. 15. Fu, Y.Y., et al., Three-dimensional optical method for integrated visualization of mouse islet microstructure and vascular network with subcellular-level resolution. Journal of Biomedical Optics, 2010. 15(4). 16. Chiu, Y.C., et al., 3-D imaging and illustration of the perfusive mouse islet sympathetic innervation and its remodelling in injury. Diabetologia, 2012. 55(12): p. 3252-3261. 17. Tang, S.C., et al., Plasticity of Schwann cells and pericytes in response to islet injury in mice. Diabetologia, 2013. 56(11): p. 2424-34. 18. Tang, S.C., S.J. Peng, and H.J. Chien, Imaging of the islet neural network. Diabetes Obes Metab, 2014. 16 Suppl 1: p. 77-86. 19. Wang, R.K.K., et al., Investigation of optical clearing of gastric tissue immersed with hyperosmotic agents. Ieee Journal of Selected Topics in Quantum Electronics, 2003. 9(2): p. 234-242. 20. Tuchin, V.V., R.K. Wang, and A.T. Yeh, Optical clearing of tissues and cells. Journal of Biomedical Optics, 2008. 13(2). 21. Xu, X. and R.K. Wang, Synergistic effect of hyperosmotic agents of dimethyl sulfoxide and glycerol on optical clearing of gastric tissue studied with near infrared spectroscopy. Phys Med Biol, 2004. 49(3): p. 457-68. 22. Hennink, W.E. and C.F. van Nostrum, Novel crosslinking methods to design hydrogels. Adv Drug Deliv Rev, 2002. 54(1): p. 13-36. 23. Kamath, K.R. and K. Park, Biodegradable Hydrogels in Drug-Delivery. Advanced Drug Delivery Reviews, 1993. 11(1-2): p. 59-84. 24. Schacht, E.H., Polymer chemistry and hydrogel systems. Journal of Physics: Conference Series, 2004. 3: p. 22–28. 25. Hoffman, A.S., Hydrogels for biomedical applications. Adv Drug Deliv Rev, 2002. 54(1): p. 3-12. 26. Azad, A.K., et al., Chitosan membrane as a wound-healing dressing: Characterization and clinical application. Journal of Biomedical Materials Research Part B-Applied Biomaterials, 2004. 69B(2): p. 216-222. 27. Kickhofen, B., et al., Chemical and physical properties of a hydrogel wound dressing. Biomaterials, 1986. 7(1): p. 67-72. 28. Yoo, H.J. and H.D. Kim, Synthesis and properties of waterborne polyurethane hydrogels for wound healing dressings. J Biomed Mater Res B Appl Biomater, 2008. 85(2): p. 326-33. 29. Chen, J., H. Park, and K. Park, Synthesis of superporous hydrogels: hydrogels with fast swelling and superabsorbent properties. J Biomed Mater Res, 1999. 44(1): p. 53-62. 30. Jafari, B., F. Rafie, and S. Davaran, Preparation and characterization of a novel smart polymeric hydrogel for drug delivery of insulin. Bioimpacts, 2011. 1(2): p. 135-43. 31. Matsumoto, A., et al., A synthetic approach toward a self-regulated insulin delivery system. Angew Chem Int Ed Engl, 2012. 51(9): p. 2124-8. 32. Silva, A.K., et al., Growth factor delivery approaches in hydrogels. Biomacromolecules, 2009. 10(1): p. 9-18. 33. Tanigo, T., R. Takaoka, and Y. Tabata, Sustained release of water-insoluble simvastatin from biodegradable hydrogel augments bone regeneration. J Control Release, 2010. 143(2): p. 201-6. 34. Langer, R. and J.P. Vacanti, Tissue engineering. Science, 1993. 260(5110): p. 920-6. 35. Matsuo, E.S. and T. Tanaka, Patterns in Shrinking Gels. Nature, 1992. 358(6386): p. 482-485. 36. Edman, P., B. Ekman, and I. Sjoholm, Immobilization of proteins in microspheres of biodegradable polyacryldextran. J Pharm Sci, 1980. 69(7): p. 838-42. 37. Dai, W.S. and T.A. Barbari, Hydrogel membranes with mesh size asymmetry based on the gradient crosslinking of poly(vinyl alcohol). Journal of Membrane Science, 1999. 156(1): p. 67-79. 38. Peppas, N.A. and R.E. Benner, Jr., Proposed method of intracordal injection and gelation of poly (vinyl alcohol) solution in vocal cords: polymer considerations. Biomaterials, 1980. 1(3): p. 158-62. 39. Kim, Y.J., M. Ebara, and T. Aoyagi, A Smart Nanofiber Web That Captures and Releases Cells. Angewandte Chemie-International Edition, 2012. 51(42): p. 10537-10541. 40. Matsukuma, D., K. Yamamoto, and T. Aoyagi, Stimuli-responsive properties of N-isopropylacrylamide-based ultrathin hydrogel films prepared by photo-cross-linking. Langmuir, 2006. 22(13): p. 5911-5915. 41. Mitsuhiro Ebara, Y.K., Ravin Narain, Naokazu Idota, Young-Jin Kim, John M. Hoffman, Koichiro Uto, Takao Aoyagi Smart Biomaterials. NIMS Monographs. 2014: pringer Japan. 42. Li, P., et al., A polycationic antimicrobial and biocompatible hydrogel with microbe membrane suctioning ability. Nat Mater, 2011. 10(2): p. 149-56. 43. Deng, C., et al., Collagen and glycopolymer based hydrogel for potential corneal application. Acta Biomater, 2010. 6(1): p. 187-94. 44. Peppas, N.A., et al., Hydrogels in biology and medicine: From molecular principles to bionanotechnology. Advanced Materials, 2006. 18(11): p. 1345-1360. 45. Bozukova, D., et al., Hydrogel nanocomposites: a potential UV/blue light filtering material for ophthalmic lenses. J Biomater Sci Polym Ed, 2011. 22(14): p. 1947-61. 46. Huo, Y.C., H. Ketelson, and S.S. Perry, Ethylene oxide-block-butylene oxide copolymer uptake by silicone hydrogel contact lens materials. Applied Surface Science, 2013. 273: p. 472-477. 47. Zhou, C.C., et al., High Water Content Hydrogel With Super High Refractive Index. Macromolecular Bioscience, 2013. 13(11): p. 1485-1491. 48. Scaiano, J.C., K.G. Stamplecoskie, and G.L. Hallett-Tapley, Photochemical Norrish type I reaction as a tool for metal nanoparticle synthesis: importance of proton coupled electron transfer. Chemical Communications, 2012. 48(40): p. 4798-4808.
|