帳號:guest(18.117.73.127)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):吳品慧
作者(外文):Wu, Pin Hui
論文名稱(中文):砷促使細胞中MTF-1與PML 交互作用的機制研究
論文名稱(外文):Study on the mechanism of Arsenic-induced interaction between MTF-1 and PML.
指導教授(中文):林立元
指導教授(外文):Lin, Lih-Yuan
口試委員(中文):李易展
楊培銘
學位類別:碩士
校院名稱:國立清華大學
系所名稱:分子與細胞生物研究所
學號:102080562
出版年(民國):104
畢業學年度:104
語文別:中文
論文頁數:68
中文關鍵詞:金屬感應轉錄因子早幼粒細胞白血病蛋白
外文關鍵詞:MTF-1PMLArsenic
相關次數:
  • 推薦推薦:0
  • 點閱點閱:141
  • 評分評分:*****
  • 下載下載:6
  • 收藏收藏:0
金屬感應轉錄因子(MTF-1)調控細胞內與金屬恆定及抗氧化作用相關基因表現,為哺乳動物發育時期重要的調節因子。早幼粒細胞白血病蛋白(PML)的基因受到選擇性剪接,具不同等型(isoform),而PML能夠促進細胞凋亡、細胞老化以及DNA修復,為人所熟知之重要腫瘤抑制因子,近期研究指出PML能夠調節細胞內氧化壓力的反應,也與相關蛋白結合並且共同調控細胞內生理反應。實驗室過去研究發現MTF-1受砷刺激後,會降低類泛素蛋白的修飾作用;研究也指出PML能夠調控其相關蛋白的類泛素蛋白修飾作用,所以本實驗為研究細胞在受砷刺激後,MTF-1與PML彼此間是否存在交互影響之作用。本研究發現於細胞中加入砷(NaAsO2)刺激,隨著刺激時間以及濃度增加,更加促進MTF-1與PML進行交互作用。而不同等型之PML,PMLⅠ到PMLⅥ皆能夠與MTF-1結合,且此交互作用並非藉由MTF-1結構中的特定區域所達成。但這種現象不會發生在受到鋅或鎘刺激的細胞中,此外PML結構中與砷結合的胱胺酸無法影響MTF-1與PML的交互作用,且此交互作用也無法調節MTF-1下游基因MT2A的表現量以及砷刺激下所造成的細胞死亡。MTF-1與PML的交互作用主要位於細胞質中,所以MTF-1並非與PML核小體進行交互作用。我們探討此交互作用在細胞內生理反應上的重要性,發現抗氧化劑BHA能夠降低MTF-1與PML的交互作用,且在共同表現MTF-1與PML的情況下,BHA會將活性氧物質(ROS)的含量降低到未處理的細胞值以下,表示活性氧物質的增加促進MTF-1與PML的交互作用。最後分別或共同表現MTF-1與PML,在受砷刺激後偵測活性氧物質含量,結果發現MTF-1與PML能夠共同降低活性氧物質生成量。這個結果證實在砷刺激下會增加細胞內的活性氧物質生成,因而促進MTF-1與PML進行交互作用並降低砷所造成的活性氧物質生成量。
Metal-responsive transcription factor (MTF-1) regulates the expression of genes that modulates metal homeostasis and oxidative stress. MTF-1 is an essential regulatory factor for embryonic development of mammals. Owing to alternative splicing of the gene, several promyelocytic leukemia protein (PML) isoform can be found in the cells. PML is a well-known tumor suppressor involving in the induction of apoptosis, senescence and DNA repair. Reportedly, PML participates in the regulation of cellular antioxidative pathway and interacts with partner protein to modulate cellular activity. Previous studies indicate that SUMO modification of MTF-1 and PML can be altered by arsenic (As) treatment, we investigated whether PML and MTF-1 interacts and regulates cellular activity. We found that As induced the interaction between MTF-1 and PML in a dose- and time-dependent manner. This interaction does not occur for specific PML isoform, but for the PMLⅠto PMLⅥ. On the other hand, PML neither interacts with a specific domain of MTF-1. Mutation at the As binding residues of PML has also no effect on the interaction with MTF-1. Noticeably, the interaction was not stimulating by zinc or cadmium. Interestingly, the MTF-1/PML interaction does not alter the expression of MT2A gene, the major downstream target gene of MTF-1, or cell viability. MTF-1 interacted with PML mainly in cytosol. It is thus speculated that MTF-1 does not interact with PML nuclear body. The As-induced MTF-1/PML interaction can be reduced by decreasing cellular oxidative stress via administration of BHA, an antioxidant. Finally, we found that MTF-1 and PML synergistically decreased the level of reactive oxygen species (ROS). We conclude that cellular ROS level increases with the addition of As and stimulates the interaction between MTF-1 and PML. Concurrently, the interaction of MTF-1 and PML reduced cellular oxidative stress generated by As.
中文摘要…………………………………………………………………3
英文摘要…………………………………………………………………5
緒論…………………………………………………………………………7
材料與方法……………………………………………………………17
結果…………………………………………………………………………26
討論…………………………………………………………………………35
參考文獻…………………………………………………………………43
附圖…………………………………………………………………………51
Andrews GK (2000) Regulation of metallothionein gene expression by oxidative stress and metal ions. Biochemical pharmacology 59: 95-104

Andrews GK (2001) Cellular zinc sensors: MTF-1 regulation of gene expression. Biometals 14: 223-237

Babula P, Masarik M, Adam V, Eckschlager T, Stiborova M, Trnkova L, Skutkova H, Provaznik I, Hubalek J, Kizek R (2012) Mammalian metallothioneins: properties and functions. Metallomics : integrated biometal science 4: 739-750

Bernardi R, Guernah I, Jin D, Grisendi S, Alimonti A, Teruya-Feldstein J, Cordon-Cardo C, Simon MC, Rafii S, Pandolfi PP (2006) PML inhibits HIF-1alpha translation and neoangiogenesis through repression of mTOR. Nature 442: 779-785

Brugnera E, Georgiev O, Radtke F, Heuchel R, Baker E, Sutherland GR, Schaffner W (1994) Cloning, chromosomal mapping and characterization of the human metal-regulatory transcription factor MTF-1. Nucleic Acids Res 22: 3167-3173

Campagna M, Herranz D, Garcia MA, Marcos-Villar L, Gonzalez-Santamaria J, Gallego P, Gutierrez S, Collado M, Serrano M, Esteban M, Rivas C (2011) SIRT1 stabilizes PML promoting its sumoylation. Cell Death Differ 18: 72-79

Cramer M, Nagy I, Murphy BJ, Gassmann M, Hottiger MO, Georgiev O, Schaffner W (2005) NF-kappaB contributes to transcription of placenta growth factor and interacts with metal responsive transcription factor-1 in hypoxic human cells. Biological chemistry 386: 865-872

Dai S, Yin Z, Yuan G, Lu H, Jia R, Xu J, Song X, Li L, Shu Y, Liang X, He C, Lv C, Zhang W (2013) Quantification of metallothionein on the liver and kidney of rats by subchronic lead and cadmium in combination. Environmental toxicology and pharmacology 36: 1207-1216

Dalton TP, Li Q, Bittel D, Liang L, Andrews GK (1996) Oxidative stress activates metal-responsive transcription factor-1 binding activity. Occupancy in vivo of metal response elements in the metallothionein-I gene promoter. J Biol Chem 271: 26233-26241

Datta J, Majumder S, Kutay H, Motiwala T, Frankel W, Costa R, Cha HC, MacDougald OA, Jacob ST, Ghoshal K (2007) Metallothionein expression is suppressed in primary human hepatocellular carcinomas and is mediated through inactivation of CCAAT/enhancer binding protein alpha by phosphatidylinositol 3-kinase signaling cascade. Cancer Res 67: 2736-2746

Ding W, Hudson LG, Liu KJ (2005) Inorganic arsenic compounds cause oxidative damage to DNA and protein by inducing ROS and RNS generation in human keratinocytes. Mol Cell Biochem 279: 105-112

Dionne KR, Zhuang Y, Leser JS, Tyler KL, Clarke P (2013) Daxx upregulation within the cytoplasm of reovirus-infected cells is mediated by interferon and contributes to apoptosis. J Virol 87: 3447-3460

Engstrom K, Vahter M, Mlakar SJ, Concha G, Nermell B, Raqib R, Cardozo A, Broberg K (2011) Polymorphisms in arsenic(+III oxidation state) methyltransferase (AS3MT) predict gene expression of AS3MT as well as arsenic metabolism. Environmental health perspectives 119: 182-188

Erker Y, Neyret-Kahn H, Seeler JS, Dejean A, Atfi A, Levy L (2013) Arkadia, a novel SUMO-targeted ubiquitin ligase involved in PML degradation. Mol Cell Biol 33: 2163-2177

Fogal V, Gostissa M, Sandy P, Zacchi P, Sternsdorf T, Jensen K, Pandolfi PP, Will H, Schneider C, Del Sal G (2000) Regulation of p53 activity in nuclear bodies by a specific PML isoform. EMBO J 19: 6185-6195

Geoffroy MC, Jaffray EG, Walker KJ, Hay RT (2010) Arsenic-induced SUMO-dependent recruitment of RNF4 into PML nuclear bodies. Mol Biol Cell 21: 4227-4239

Giorgi C, Ito K, Lin HK, Santangelo C, Wieckowski MR, Lebiedzinska M, Bononi A, Bonora M, Duszynski J, Bernardi R, Rizzuto R, Tacchetti C, Pinton P, Pandolfi PP (2010) PML regulates apoptosis at endoplasmic reticulum by modulating calcium release. Science 330: 1247-1251

Guan X, Du J, Meng X, Sun Y, Sun B, Hu Q (2012) Application of titanium dioxide in arsenic removal from water: A review. Journal of hazardous materials 215-216: 1-16

Gunes C, Heuchel R, Georgiev O, Muller KH, Lichtlen P, Bluthmann H, Marino S, Aguzzi A, Schaffner W (1998) Embryonic lethality and liver degeneration in mice lacking the metal-responsive transcriptional activator MTF-1. EMBO J 17: 2846-2854

Gunther V, Lindert U, Schaffner W (2012) The taste of heavy metals: gene regulation by MTF-1. Biochim Biophys Acta 1823: 1416-1425

Guo L, Lichten LA, Ryu MS, Liuzzi JP, Wang F, Cousins RJ (2010) STAT5-glucocorticoid receptor interaction and MTF-1 regulate the expression of ZnT2 (Slc30a2) in pancreatic acinar cells. Proc Natl Acad Sci U S A 107: 2818-2823

Guo S, Cheng X, Lim JH, Liu Y, Kao HY (2014) Control of antioxidative response by the tumor suppressor protein PML through regulating Nrf2 activity. Mol Biol Cell 25: 2485-2498

He X, Ma Q (2009) Induction of metallothionein I by arsenic via metal-activated transcription factor 1: critical role of C-terminal cysteine residues in arsenic sensing. J Biol Chem 284: 12609-12621

Jeanne M, Lallemand-Breitenbach V, Ferhi O, Koken M, Le Bras M, Duffort S, Peres L, Berthier C, Soilihi H, Raught B, de The H (2010) PML/RARA oxidation and arsenic binding initiate the antileukemia response of As2O3. Cancer Cell 18: 88-98

Jensen K, Shiels C, Freemont PS (2001) PML protein isoforms and the RBCC/TRIM motif. Oncogene 20: 7223-7233

Jomova K, Jenisova Z, Feszterova M, Baros S, Liska J, Hudecova D, Rhodes CJ, Valko M (2011) Arsenic: toxicity, oxidative stress and human disease. Journal of applied toxicology : JAT 31: 95-107

Jul-Larsen A, Grudic A, Bjerkvig R, Boe SO (2009) Cell-cycle regulation and dynamics of cytoplasmic compartments containing the promyelocytic leukemia protein and nucleoporins. J Cell Sci 122: 1201-1210

Kensler TW, Wakabayashi N, Biswal S (2007) Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway. Annual review of pharmacology and toxicology 47: 89-116

Khalfin-Rabinovich Y, Weinstein A, Levi BZ (2011) PML is a key component for the differentiation of myeloid progenitor cells to macrophages. International immunology 23: 287-296

Lallemand-Breitenbach V, de The H (2010) PML nuclear bodies. Cold Spring Harbor perspectives in biology 2: a000661

Lang E, Grudic A, Pankiv S, Bruserud O, Simonsen A, Bjerkvig R, Bjoras M, Boe SO (2012) The arsenic-based cure of acute promyelocytic leukemia promotes cytoplasmic sequestration of PML and PML/RARA through inhibition of PML body recycling. Blood 120: 847-857

Lang M, Jegou T, Chung I, Richter K, Munch S, Udvarhelyi A, Cremer C, Hemmerich P, Engelhardt J, Hell SW, Rippe K (2010) Three-dimensional organization of promyelocytic leukemia nuclear bodies. J Cell Sci 123: 392-400

LaRochelle O, Labbe S, Harrisson JF, Simard C, Tremblay V, St-Gelais G, Govindan MV, Seguin C (2008) Nuclear factor-1 and metal transcription factor-1 synergistically activate the mouse metallothionein-1 gene in response to metal ions. J Biol Chem 283: 8190-8201

Li Y, Kimura T, Huyck RW, Laity JH, Andrews GK (2008) Zinc-induced formation of a coactivator complex containing the zinc-sensing transcription factor MTF-1, p300/CBP, and Sp1. Mol Cell Biol 28: 4275-4284

Lichtlen P, Schaffner W (2001) The "metal transcription factor" MTF-1: biological facts and medical implications. Swiss medical weekly 131: 647-652

Lin HK, Bergmann S, Pandolfi PP (2004) Cytoplasmic PML function in TGF-beta signalling. Nature 431: 205-211

Lin MC, Liu YC, Tam MF, Lu YJ, Hsieh YT, Lin LY (2012) PTEN interacts with metal-responsive transcription factor 1 and stimulates its transcriptional activity. Biochem J 441: 367-377

Lindert U, Cramer M, Meuli M, Georgiev O, Schaffner W (2009) Metal-responsive transcription factor 1 (MTF-1) activity is regulated by a nonconventional nuclear localization signal and a metal-responsive transactivation domain. Mol Cell Biol 29: 6283-6293

Liu YC, Lin MC, Chen HC, Tam MF, Lin LY (2011) The role of small ubiquitin-like modifier-interacting motif in the assembly and regulation of metal-responsive transcription factor 1. J Biol Chem 286: 42818-42829

Lokken AA, Zeleznik-Le NJ (2012) Breaking the LSD1/KDM1A addiction: therapeutic targeting of the epigenetic modifier in AML. Cancer Cell 21: 451-453

Mao YS, Zhang B, Spector DL (2011) Biogenesis and function of nuclear bodies. Trends in genetics : TIG 27: 295-306

Mathews V, Chendamarai E, George B, Viswabandya A, Srivastava A (2011) Treatment of acute promyelocytic leukemia with single-agent arsenic trioxide. Mediterranean journal of hematology and infectious diseases 3: e2011056

Maul GG, Yu E, Ishov AM, Epstein AL (1995) Nuclear domain 10 (ND10) associated proteins are also present in nuclear bodies and redistribute to hundreds of nuclear sites after stress. J Cell Biochem 59: 498-513

Melnick A, Licht JD (1999) Deconstructing a disease: RARalpha, its fusion partners, and their roles in the pathogenesis of acute promyelocytic leukemia. Blood 93: 3167-3215

Mizejewski GJ (1997) alpha-fetoprotein as a biologic response modifier: relevance to domain and subdomain structure. Proceedings of the Society for Experimental Biology and Medicine Society for Experimental Biology and Medicine 215: 333-362

Nisole S, Maroui MA, Mascle XH, Aubry M, Chelbi-Alix MK (2013) Differential Roles of PML Isoforms. Front Oncol 3: 125

Okumura F, Li Y, Itoh N, Nakanishi T, Isobe M, Andrews GK, Kimura T (2011) The zinc-sensing transcription factor MTF-1 mediates zinc-induced epigenetic changes in chromatin of the mouse metallothionein-I promoter. Biochim Biophys Acta 1809: 56-62

Otles S, Cagindi O (2010) Health importance of arsenic in drinking water and food. Environmental geochemistry and health 32: 367-371

Perkins MR, Ryschkewitsch C, Liebner JC, Monaco MC, Himelfarb D, Ireland S, Roque A, Edward HL, Jensen PN, Remington G, Abraham T, Abraham J, Greenberg B, Kaufman C, LaGanke C, Monson NL, Xu X, Frohman E, Major EO, Douek DC (2012) Changes in JC virus-specific T cell responses during natalizumab treatment and in natalizumab-associated progressive multifocal leukoencephalopathy. PLoS Pathog 8: e1003014

Powell BL (2011) Arsenic trioxide in acute promyelocytic leukemia: potion not poison. Expert review of anticancer therapy 11: 1317-1319

Quignon F, De Bels F, Koken M, Feunteun J, Ameisen JC, de The H (1998) PML induces a novel caspase-independent death process. Nat Genet 20: 259-265

Radtke F, Georgiev O, Muller HP, Brugnera E, Schaffner W (1995) Functional domains of the heavy metal-responsive transcription regulator MTF-1. Nucleic Acids Res 23: 2277-2286

Reineke EL, Lam M, Liu Q, Liu Y, Stanya KJ, Chang KS, Means AR, Kao HY (2008) Degradation of the tumor suppressor PML by Pin1 contributes to the cancer phenotype of breast cancer MDA-MB-231 cells. Mol Cell Biol 28: 997-1006

Sahin U, Ferhi O, Jeanne M, Benhenda S, Berthier C, Jollivet F, Niwa-Kawakita M, Faklaris O, Setterblad N, de The H, Lallemand-Breitenbach V (2014) Oxidative stress-induced assembly of PML nuclear bodies controls sumoylation of partner proteins. J Cell Biol 204: 931-945

Salomoni P, Pandolfi PP (2002) The role of PML in tumor suppression. Cell 108: 165-170

Saydam N, Georgiev O, Nakano MY, Greber UF, Schaffner W (2001) Nucleo-cytoplasmic trafficking of metal-regulatory transcription factor 1 is regulated by diverse stress signals. J Biol Chem 276: 25487-25495

Taylor KM, Kille P, Hogstrand C (2012) Protein kinase CK2 opens the gate for zinc signaling. Cell Cycle 11: 1863-1864

Topisirovic I, Capili AD, Borden KL (2002) Gamma interferon and cadmium treatments modulate eukaryotic initiation factor 4E-dependent mRNA transport of cyclin D1 in a PML-dependent manner. Mol Cell Biol 22: 6183-6198

Vengellur A, Grier E, Lapres JJ (2011) The Loss of HIF1alpha Leads to Increased Susceptibility to Cadmium-Chloride-Induced Toxicity in Mouse Embryonic Fibroblasts. Journal of toxicology 2011: 391074

Wang Y, Wimmer U, Lichtlen P, Inderbitzin D, Stieger B, Meier PJ, Hunziker L, Stallmach T, Forrer R, Rulicke T, Georgiev O, Schaffner W (2004) Metal-responsive transcription factor-1 (MTF-1) is essential for embryonic liver development and heavy metal detoxification in the adult liver. FASEB J 18: 1071-1079

Watanabe T, Hirano S (2013) Metabolism of arsenic and its toxicological relevance. Archives of toxicology 87: 969-979

Wimmer U, Wang Y, Georgiev O, Schaffner W (2005) Two major branches of anti-cadmium defense in the mouse: MTF-1/metallothioneins and glutathione. Nucleic Acids Res 33: 5715-5727

Wu J, Zhou LQ, Yu W, Zhao ZG, Xie XM, Wang WT, Xiong J, Li M, Xue Z, Wang X, Zhang P, Mao BB, Hao DL, Lv X, Liu DP (2014) PML4 facilitates erythroid differentiation by enhancing the transcriptional activity of GATA-1. Blood 123: 261-270

Wu Q, Hu H, Lan J, Emenari C, Wang Z, Chang KS, Huang H, Yao X (2009) PML3 Orchestrates the Nuclear Dynamics and Function of TIP60. J Biol Chem 284: 8747-8759

Wu WS, Vallian S, Seto E, Yang WM, Edmondson D, Roth S, Chang KS (2001) The growth suppressor PML represses transcription by functionally and physically interacting with histone deacetylases. Mol Cell Biol 21: 2259-2268

Yedjou C, Tchounwou P, Jenkins J, McMurray R (2010) Basic mechanisms of arsenic trioxide (ATO)-induced apoptosis in human leukemia (HL-60) cells. J Hematol Oncol 3: 28

Yu J, Lan J, Wang C, Wu Q, Zhu Y, Lai X, Sun J, Jin C, Huang H (2010) PML3 interacts with TRF1 and is essential for ALT-associated PML bodies assembly in U2OS cells. Cancer Lett 291: 177-186

Zhang B, Egli D, Georgiev O, Schaffner W (2001) The Drosophila homolog of mammalian zinc finger factor MTF-1 activates transcription in response to heavy metals. Mol Cell Biol 21: 4505-4514

Zhang X, Yang XR, Sun C, Hu B, Sun YF, Huang XW, Wang Z, He YF, Zeng HY, Qiu SJ, Cao Y, Fan J, Zhou J (2015) Promyelocytic leukemia protein induces arsenic trioxide resistance through regulation of aldehyde dehydrogenase 3 family member A1 in hepatocellular carcinoma. Cancer Lett 366: 112-122

Zhang XW, Yan XJ, Zhou ZR, Yang FF, Wu ZY, Sun HB, Liang WX, Song AX, Lallemand-Breitenbach V, Jeanne M, Zhang QY, Yang HY, Huang QH, Zhou GB, Tong JH, Zhang Y, Wu JH, Hu HY, de The H, Chen SJ, Chen Z (2010) Arsenic trioxide controls the fate of the PML-RARalpha oncoprotein by directly binding PML. Science 328: 240-243

Zhong S, Salomoni P, Pandolfi PP (2000) The transcriptional role of PML and the nuclear body. Nat Cell Biol 2: E85-90

陳俊豪.(2013)金屬感應轉錄因子與缺氧誘導因子之交互作用及對其轉錄活性的影響.Institute of Molecular and Cellular Biology, Department of Life Science. National Tsing Hua University

顏銘輝.(2014)砷對金屬感應轉錄因子蛋白質分布及小泛素修飾之影響.Institute of Molecular and Cellular Biology, Department of Life Science. National Tsing Hua University.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *