帳號:guest(3.16.82.184)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):蔡佳玲
作者(外文):Tsai, Chia Ling
論文名稱(中文):連接長度及雙硫鍵對綠豆防禦素環形重組突變之影響
論文名稱(外文):The Effects of Linker Length and Disulfide-bond Constraint on Circularly Permuted Vigna radiata Plant Defensin 1
指導教授(中文):呂平江
指導教授(外文):Lyu, Ping Chiang
口試委員(中文):蘇士哲
鄭惠春
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生物資訊與結構生物研究所
學號:102080559
出版年(民國):105
畢業學年度:104
語文別:中文
論文頁數:60
中文關鍵詞:環形重組綠豆植物防禦素第一型連接胜肽長度雙硫鍵
外文關鍵詞:Circular permutationVigna radiata plant defensin 1linker lengthdisulfide bond
相關次數:
  • 推薦推薦:0
  • 點閱點閱:42
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
環形重組是一種改善蛋白質特性的蛋白質工程技術。和傳統的突變相比,環形重組是以連接胜肽 (linker) 聯繫原本的胺基端和羧基端,再打開新的端點,造成蛋白質序列排列改變。綠豆植物防禦素第一型 (VrD1) 是個富含半胱胺酸的蛋白,共有四對雙硫鍵,其中有對雙硫鍵 (C3-C46) 連結了原本的胺基端和羧基端。我們將環形序列重組的蛋白質工程技術應用到綠豆植物防禦素第一型,去探討連接胜肽的長度對富含雙硫鍵的蛋白質之影響。透過圓二光偏極光譜儀,內生性螢光偵測,及抑制澱粉酶活性測定來分析環形重組綠豆植物防禦素第一型的結構與功能變化。我們發現連接胜肽短於原本胺基端和羧基端的距離會造成蛋白質結構改變且喪失抑制澱粉酶的功能。因此我們推測在使用較短連接胜肽的環形重組綠豆植物防禦素第一型上所觀察到的蛋白質結構變化可能是因為較短的連接胜肽及終端的雙硫鍵 (C3-C46) 同時存在造成局部較高的約束力,因而導致蛋白質折疊不佳。我們利用定點突變的方法,進一步將不同長度的連接胜肽接合的環形重組綠豆植物防禦素第一型中的終端的雙硫鍵 (C3-C46) 移除。結果顯示移除終端的雙硫鍵 (C3-C46) 的環形重組綠豆植物防禦素第一型其蛋白質摺疊仍然不佳,且熱穩定度下降,但不會影響其功能。因此我們認為對於環形重組綠豆植物防禦素第一型,連接胜肽的長度所造成的約束力,比起終端雙硫鍵 (C3-C46) 來得重要。
Circular permutation (CP) is a protein-engineering technique to improve the characteristics of protein. In contrast with traditional mutagenesis, CP requires a linker to connect the native termini and creates new termini to result in the rearrangement of protein sequence. Vigna radiata plant defensin 1 (VrD1) is a cysteine-rich protein containing four disulfide bonds, and has a disulfide bond (C3-C46) bridging the native termini. We applied CP to VrD1 for exploring the influence of linker length and the effect of CP on cysteine-rich protein. The characteristics of structure and function in CP-VrD1 were analyzed through circular dichroism, intrinsic fluorescence, and α-amylase inhibition assay. We found that linkers with length less than the distance between original termini resulted in structural change and losing functions. Therefore, we speculated the poor folding of CP-VrD1 with shorter linker was due to the simultaneous existence of shorter linker and the terminal disulfide bond (C3-C46). Site-directed mutagenesis was used to remove terminal disulfide-bond in CP-VrD1 with linkers of different length, and to further elucidate the influence of linker length and disulfide-bond. Our results showed that terminal disulfide-bond removed CP-VrD1 still has poor structural folding and less thermal stability, but the function was not changed. We concluded that poor folding of CP-VrD1 was caused by the constraint of linker with shorter length rather than the existence of terminal disulfide bond (C3-C46).
Abbreviations 1
Chapter I Introduction 2
1.1 Plant Defensins 2
1.2 Vigna radiata plant defensin 1 (VrD1) 3
1.3 Circular permutation (CP) 4
1.4 The theme of the thesis 6
Chapter II Materials and Methods 8
2.1 Construction of circular-permuted VrD1 (CP-VrD1) 8
2.1.1 Materials 8
2.1.2 Methods 8
2.2 Expression and purification of CP-VrD1 9
2.2.1 Materials 9
2.2.2 Methods 9
2.3 Purification of Tenebrio molitorα-amylase (TMA) 11
2.3.1 Materials 11
2.3.2 Methods 11
2.4 Tricine-SDS-PAGE 12
2.5 Mass spectrometer 13
2.6 Quantification of protein concentration 13
2.7 Circular dichroism (CD) spectroscopy 14
2.8 Fluorescence spectroscopy 14
2.9 TMA activity assay and inhibition assay 15
Chapter III Results and Discussion 17
3.1 Design and Contruction of CP36-VrD1 17
3.2 Expression and purification of CP36-VrD1 18
3.3 Structural analysis of WT-VrD1 and CP36-VrD1 18
3.4 Thermal stability of WT-VrD1 and CP-VrD1 20
3.5 TMA-inhibition assay of VrD1 proteins 21
Chapter IV Conclusion 24
References 56
1. Mendez, E., et al., Primary structure and inhibition of protein synthesis in eukaryotic cell-free system of a novel thionin, gamma-hordothionin, from barley endosperm. Eur J Biochem, 1990. 194[1]: p. 533-9.
2. Colilla, F.J., A. Rocher, and E. Mendez, γ-Purothionins: amino acid sequence of two polypeptides of a new family of thionins from wheat endosperm. FEBS Letters, 1990. 270: p. 191-194.
3. Lay, F.T., et al., Dimerization of plant defensin NaD1 enhances its antifungal activity. J Biol Chem, 2012. 287[1]: p. 19961-72.
4. Baxter, A.A., et al., The Tomato Defensin TPP3 Binds Phosphatidylinositol (4,5)-Bisphosphate via a Conserved Dimeric Cationic Grip Conformation To Mediate Cell Lysis. Mol Cell Biol, 2015. 35(11): p. 1964-78.
5. Fant, F., et al., Determination of the three-dimensional solution structure of Raphanus sativus antifungal protein 1 by 1H NMR. J Mol Biol, 1998. 279(1): p. 257-70.
6. Song, X., et al., Ultra-high resolution crystal structure of a dimeric defensin SPE10. FEBS Lett, 2011. 585(2): p. 300-6.
7. Mee Do, H., et al., Differential expression and in situ localization of a pepper defensin (CADEF1) gene in response to pathogen infection, abiotic elicitors and environmental stresses in Capsicum annuum. Plant Science, 2004. 166(5): p. 1297-1305.
8. Janssen, B.J., et al., Structure of Petunia hybrida defensin 1, a novel plant defensin with five disulfide bonds. Biochemistry, 2003. 42(27): p. 8214-22.
9. Franco, O.L., et al., Plant alpha-amylase inhibitors and their interaction with insect alpha-amylases. Eur J Biochem, 2002. 269(2): p. 397-412.
10. Bloch, C., Jr. and M. Richardson, A new family of small (5 kDa) protein inhibitors of insect alpha-amylases from seeds or sorghum (Sorghum bicolar (L) Moench) have sequence homologies with wheat gamma-purothionins. FEBS Lett, 1991. 279(1): p. 101-4.
11. Wijaya, R., et al., Defense proteins from seed of Cassia fistula include a lipid transfer protein homologue and a protease inhibitory plant defensin. Plant Sci, 2000. 159(2): p. 243-255.
12. Chen, G.H., et al., Cloning and characterization of a plant defensin VaD1 from azuki bean. J Agric Food Chem, 2005. 53(4): p. 982-8.
13. Kushmerick, C., et al., Functional and structural features of gamma-zeathionins, a new class of sodium channel blockers. FEBS Lett, 1998. 440(3): p. 302-6.
14. Spelbrink, R.G., et al., Differential antifungal and calcium channel-blocking activity among structurally related plant defensins. Plant Physiol, 2004. 135(4): p. 2055-67.
15. Chen, J.J., et al., Cloning and functional expression of a mungbean defensin VrD1 in Pichia pastoris. J Agric Food Chem, 2004. 52(8): p. 2256-61.
16. Liu, Y.J., et al., Solution structure of the plant defensin VrD1 from mung bean and its possible role in insecticidal activity against bruchids. Proteins, 2006. 63(4): p. 777-86.
17. Yang, Y.F., et al., Alanine substitutions of noncysteine residues in the cysteine-stabilized alphabeta motif. Protein Sci, 2009. 18(7): p. 1498-506.
18. Lin, K.F., et al., Structure-based protein engineering for alpha-amylase inhibitory activity of plant defensin. Proteins, 2007. 68(2): p. 530-40.
19. Reitinger, S., et al., Circular permutation of Bacillus circulans xylanase: a kinetic and structural study. Biochemistry, 2010. 49(11): p. 2464-74.
20. Cellitti, J., et al., Exploring subdomain cooperativity in T4 lysozyme I: structural and energetic studies of a circular permutant and protein fragment. Protein Sci, 2007. 16(5): p. 842-51.
21. Reitinger, S., et al., Circular permutation of Bacillus circulans xylanase: a kinetic and structural study. Biochemistry, 2010. 49(11): p. 2464-74.
22. Qian, Z., et al., Structural redesign of lipase B from Candida antarctica by circular permutation and incremental truncation. J Mol Biol, 2009. 393(1): p. 191-201.
23. Cunningham, B.A., et al., Favin versus concanavalin A: Circularly permuted amino acid sequences. Proceedings of the National Academy of Sciences of the United States of America, 1979. 76(7): p. 3218-3222.
24. Chen, W.T., et al., Circular permutation of chicken interleukin-1 beta enhances its thermostability. Chem Commun (Camb), 2014. 50(32): p. 4248-50.
25. Qian, Z. and S. Lutz, Improving the catalytic activity of Candida antarctica lipase B by circular permutation. J Am Chem Soc, 2005. 127(39): p. 13466-7.
26. Cheltsov, A.V., M.J. Barber, and G.C. Ferreira, Circular permutation of 5-aminolevulinate synthase. Mapping the polypeptide chain to its function. J Biol Chem, 2001. 276(22): p. 19141-9.
27. Hu, Z., et al., Ligand binding and circular permutation modify residue interaction network in DHFR. PLoS Comput Biol, 2007. 3(6): p. e117.
28. Johnson, R.J., S.R. Lin, and R.T. Raines, A ribonuclease zymogen activated by the NS3 protease of the hepatitis C virus. FEBS J, 2006. 273(23): p. 5457-65.
29. Turcotte, R.F. and R.T. Raines, Design and characterization of an HIV-specific ribonuclease zymogen. AIDS Res Hum Retroviruses, 2008. 24(11): p. 1357-63.
30. Lo, W.C. and P.C. Lyu, CPSARST: an efficient circular permutation search tool applied to the detection of novel protein structural relationships. Genome Biol, 2008. 9(1): p. R11.
31. Lo, W.C., et al., CPDB: a database of circular permutation in proteins. Nucleic Acids Res, 2009. 37(Database issue): p. D328-32.
32. Lo, W.C., et al., CPred: a web server for predicting viable circular permutations in proteins. Nucleic Acids Res, 2012. 40(Web Server issue): p. W232-7.
33. Strobl, S., et al., The alpha-amylase from the yellow meal worm: complete primary structure, crystallization and preliminary X-ray analysis. FEBS Lett, 1997. 409(1): p. 109-14.
34. Schagger, H., Tricine-SDS-PAGE. Nat Protoc, 2006. 1(1): p. 16-22.
35. Greenfield, N.J., Using circular dichroism spectra to estimate protein secondary structure. Nat Protoc, 2006. 1(6): p. 2876-90.
36. Royer, C.A., Probing protein folding and conformational transitions with fluorescence. Chem Rev, 2006. 106(5): p. 1769-84.
37. Iwakura, M. and T. Nakamura, Effects of the length of a glycine linker connecting the N-and C-termini of a circularly permuted dihydrofolate reductase. Protein Eng, 1998. 11(8): p. 707-13.
38. Akemann, W., C.D. Raj, and T. Knopfel, Functional characterization of permuted enhanced green fluorescent proteins comprising varying linker peptides. Photochem Photobiol, 2001. 74(2): p. 356-63.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *