|
1. Mendez, E., et al., Primary structure and inhibition of protein synthesis in eukaryotic cell-free system of a novel thionin, gamma-hordothionin, from barley endosperm. Eur J Biochem, 1990. 194[1]: p. 533-9. 2. Colilla, F.J., A. Rocher, and E. Mendez, γ-Purothionins: amino acid sequence of two polypeptides of a new family of thionins from wheat endosperm. FEBS Letters, 1990. 270: p. 191-194. 3. Lay, F.T., et al., Dimerization of plant defensin NaD1 enhances its antifungal activity. J Biol Chem, 2012. 287[1]: p. 19961-72. 4. Baxter, A.A., et al., The Tomato Defensin TPP3 Binds Phosphatidylinositol (4,5)-Bisphosphate via a Conserved Dimeric Cationic Grip Conformation To Mediate Cell Lysis. Mol Cell Biol, 2015. 35(11): p. 1964-78. 5. Fant, F., et al., Determination of the three-dimensional solution structure of Raphanus sativus antifungal protein 1 by 1H NMR. J Mol Biol, 1998. 279(1): p. 257-70. 6. Song, X., et al., Ultra-high resolution crystal structure of a dimeric defensin SPE10. FEBS Lett, 2011. 585(2): p. 300-6. 7. Mee Do, H., et al., Differential expression and in situ localization of a pepper defensin (CADEF1) gene in response to pathogen infection, abiotic elicitors and environmental stresses in Capsicum annuum. Plant Science, 2004. 166(5): p. 1297-1305. 8. Janssen, B.J., et al., Structure of Petunia hybrida defensin 1, a novel plant defensin with five disulfide bonds. Biochemistry, 2003. 42(27): p. 8214-22. 9. Franco, O.L., et al., Plant alpha-amylase inhibitors and their interaction with insect alpha-amylases. Eur J Biochem, 2002. 269(2): p. 397-412. 10. Bloch, C., Jr. and M. Richardson, A new family of small (5 kDa) protein inhibitors of insect alpha-amylases from seeds or sorghum (Sorghum bicolar (L) Moench) have sequence homologies with wheat gamma-purothionins. FEBS Lett, 1991. 279(1): p. 101-4. 11. Wijaya, R., et al., Defense proteins from seed of Cassia fistula include a lipid transfer protein homologue and a protease inhibitory plant defensin. Plant Sci, 2000. 159(2): p. 243-255. 12. Chen, G.H., et al., Cloning and characterization of a plant defensin VaD1 from azuki bean. J Agric Food Chem, 2005. 53(4): p. 982-8. 13. Kushmerick, C., et al., Functional and structural features of gamma-zeathionins, a new class of sodium channel blockers. FEBS Lett, 1998. 440(3): p. 302-6. 14. Spelbrink, R.G., et al., Differential antifungal and calcium channel-blocking activity among structurally related plant defensins. Plant Physiol, 2004. 135(4): p. 2055-67. 15. Chen, J.J., et al., Cloning and functional expression of a mungbean defensin VrD1 in Pichia pastoris. J Agric Food Chem, 2004. 52(8): p. 2256-61. 16. Liu, Y.J., et al., Solution structure of the plant defensin VrD1 from mung bean and its possible role in insecticidal activity against bruchids. Proteins, 2006. 63(4): p. 777-86. 17. Yang, Y.F., et al., Alanine substitutions of noncysteine residues in the cysteine-stabilized alphabeta motif. Protein Sci, 2009. 18(7): p. 1498-506. 18. Lin, K.F., et al., Structure-based protein engineering for alpha-amylase inhibitory activity of plant defensin. Proteins, 2007. 68(2): p. 530-40. 19. Reitinger, S., et al., Circular permutation of Bacillus circulans xylanase: a kinetic and structural study. Biochemistry, 2010. 49(11): p. 2464-74. 20. Cellitti, J., et al., Exploring subdomain cooperativity in T4 lysozyme I: structural and energetic studies of a circular permutant and protein fragment. Protein Sci, 2007. 16(5): p. 842-51. 21. Reitinger, S., et al., Circular permutation of Bacillus circulans xylanase: a kinetic and structural study. Biochemistry, 2010. 49(11): p. 2464-74. 22. Qian, Z., et al., Structural redesign of lipase B from Candida antarctica by circular permutation and incremental truncation. J Mol Biol, 2009. 393(1): p. 191-201. 23. Cunningham, B.A., et al., Favin versus concanavalin A: Circularly permuted amino acid sequences. Proceedings of the National Academy of Sciences of the United States of America, 1979. 76(7): p. 3218-3222. 24. Chen, W.T., et al., Circular permutation of chicken interleukin-1 beta enhances its thermostability. Chem Commun (Camb), 2014. 50(32): p. 4248-50. 25. Qian, Z. and S. Lutz, Improving the catalytic activity of Candida antarctica lipase B by circular permutation. J Am Chem Soc, 2005. 127(39): p. 13466-7. 26. Cheltsov, A.V., M.J. Barber, and G.C. Ferreira, Circular permutation of 5-aminolevulinate synthase. Mapping the polypeptide chain to its function. J Biol Chem, 2001. 276(22): p. 19141-9. 27. Hu, Z., et al., Ligand binding and circular permutation modify residue interaction network in DHFR. PLoS Comput Biol, 2007. 3(6): p. e117. 28. Johnson, R.J., S.R. Lin, and R.T. Raines, A ribonuclease zymogen activated by the NS3 protease of the hepatitis C virus. FEBS J, 2006. 273(23): p. 5457-65. 29. Turcotte, R.F. and R.T. Raines, Design and characterization of an HIV-specific ribonuclease zymogen. AIDS Res Hum Retroviruses, 2008. 24(11): p. 1357-63. 30. Lo, W.C. and P.C. Lyu, CPSARST: an efficient circular permutation search tool applied to the detection of novel protein structural relationships. Genome Biol, 2008. 9(1): p. R11. 31. Lo, W.C., et al., CPDB: a database of circular permutation in proteins. Nucleic Acids Res, 2009. 37(Database issue): p. D328-32. 32. Lo, W.C., et al., CPred: a web server for predicting viable circular permutations in proteins. Nucleic Acids Res, 2012. 40(Web Server issue): p. W232-7. 33. Strobl, S., et al., The alpha-amylase from the yellow meal worm: complete primary structure, crystallization and preliminary X-ray analysis. FEBS Lett, 1997. 409(1): p. 109-14. 34. Schagger, H., Tricine-SDS-PAGE. Nat Protoc, 2006. 1(1): p. 16-22. 35. Greenfield, N.J., Using circular dichroism spectra to estimate protein secondary structure. Nat Protoc, 2006. 1(6): p. 2876-90. 36. Royer, C.A., Probing protein folding and conformational transitions with fluorescence. Chem Rev, 2006. 106(5): p. 1769-84. 37. Iwakura, M. and T. Nakamura, Effects of the length of a glycine linker connecting the N-and C-termini of a circularly permuted dihydrofolate reductase. Protein Eng, 1998. 11(8): p. 707-13. 38. Akemann, W., C.D. Raj, and T. Knopfel, Functional characterization of permuted enhanced green fluorescent proteins comprising varying linker peptides. Photochem Photobiol, 2001. 74(2): p. 356-63.
|