帳號:guest(18.117.159.105)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):李孟蓉
作者(外文):Lee, Meng Jung
論文名稱(中文):短期改變發育中的神經活性促進視網膜神經纖維的生長
論文名稱(外文):Short-term modulation of developmental neural activity promotes neurite outgrowth of retinal explants
指導教授(中文):焦傳金
指導教授(外文):Chiao, Chuan Chin
口試委員(中文):王致恬
范龍生
陳令儀
口試委員(外文):Wang, Chih Tien
Fan, Long Sheng
Chen, Linyi
學位類別:碩士
校院名稱:國立清華大學
系所名稱:系統神經科學研究所
學號:102080558
出版年(民國):104
畢業學年度:104
語文別:中文英文
論文頁數:37
中文關鍵詞:視網膜波視網膜節細胞電刺激軸突再生神經營養因子
外文關鍵詞:retinal wavesretinal ganglion cellselectrical stimulationaxon regenerationneurotrophic factors
相關次數:
  • 推薦推薦:0
  • 點閱點閱:59
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
成熟後的哺乳類中樞神經系統在受到嚴重創傷後往往無法再生。然而目前已知在視網膜節細胞的發育過程中,軸突再生能力的逐漸喪失並不是由其本身內在的基因決定,而是受到外在環境的訊息影響。自發性視網膜波為視網膜發育過程中最主要的神經活動,因此藉由模仿發育過程中的神經活性來重現成長時的環境,將有可能對視網膜節細胞的軸突再生有所助益。結果顯示,當我們提供短時間相似於第二期視網膜波的電刺激時,可以有效提升原先應該表現第三期視網膜波的視網膜外植體的神經纖維生長。類似的情形,在同期的視網膜中,藉由短時間阻擋抑制性的神經傳遞進而引發視網膜產生大規模波動狀的神經活動,即使在沒有外加神經營養因子的情況下,視網膜外植體的神經纖維生長亦可明顯增加。更令人意外的結果是,藉由藥物抑制麩胺酸而非乙烯膽鹼的神經傳遞,竟可顯著地減少原先應該表現由乙烯膽鹼主導的第二期視網膜波的視網膜外植體的神經纖維生長。這些發現支持了短期回復視網膜在發育當中前一期的神經活性可有效促進視網膜神經纖維的生長,這些成果也有機會在未來對因節細胞發育過程中逐漸喪失軸突生長能力的視網膜提供有效的治療方法。

關鍵字 : 視網膜波、視網膜節細胞、電刺激、軸突再生、神經營養因子
Mature mammalian central nervous system fails to regenerate after severe injuries. However, it is known that gradual loss of axon growth ability of retinal ganglion cells (RGCs) during development is largely determined by extrinsic signals rather than programmed genetically. Spontaneous retinal waves are the major neural activity during retinal development. Thus, restoring developmental environment by mimicking these neural activities may provide help to axon regeneration of RGCs. Here we demonstrated that neurite outgrowth of retinal explants was greatly enhanced when short term electrical stimulation similar to stage II retinal waves was applied to the retinas normally displayed stage III retinal waves. Similarly, short term induction of globally wave-like neural activity by blocking inhibitory neural transmission in the same age of retinas also greatly promoted neurite outgrowth even in the absence of exogenous neurotrophic factors. Surprisingly, neurite outgrowth was significantly reduced when glutamate transmission was blocked pharmacologically in the retinas normally displayed stage II cholinergic retinal waves. These findings support that short term restoration of environments that mimic neural activities of developmentally precedent retinas is sufficient to enhance neurite outgrowth of retinal explants, and may lead to a therapeutic strategy of preventing the gradual loss of axon growth ability of RGCs in more mature retinas.
Key words: retinal waves, retinal ganglion cells, electrical stimulation, axon regeneration, neurotrophic factors
Contents
摘要 i
Abstract ii
1. Introduction 1
2. Materials and Methods 5
2.1 Retinal explant preparation 5
2.2 Retinal explant culture 5
2.3 Immunohistochemistry 6
2.4 Neurite outgrowth identification and quantification 7
2.5 Electrical stimulation and recording 8
2.6 Pharmacological treatments 9
2.7 Cell viability assay 9
2.8 Wave property analysis 10
3. Results 12
3.1 Stage II wave-like electrical stimultaion promotes survival and neurite outgrowth in retinal explants 12
3.2 Short term electrical stimulation without altering intrinsic wave properties is sufficient to promote neurite outgrowth in P11 retinal explants 13
3.3 Glutamate transmission but not stage II retinal waves promotes neurite outgrowth in P5 retinal explants 14
3.4 Short term induction of globally wave-like neural activity promotes survival and neurite outgrowth in P11 retinal explants 16
4. Discussion 18
4.1 Glutamatergic transmission affects neurite outgrowth in immature retinal explants 18
4.2 ES promotes neurite outgrowth by stimulating RGCs directly 20
4.3 Short-term elevation of neural activity results in long-term effect of promoting neurite outgrowth 21
4.4 The promoting effect of neurite outgrowth depends on electrical activity patterns 22
4.5 Limitation of neurite outgrowth promoted by neural activity 24
5. References 25
6. Figures 29
Apara A, Goldberg JL (2014) Molecular mechanisms of the suppression of axon regeneration by KLF transcription factors. Neural Regen Res 9:1418-1421.
Balkowiec A, Katz DM (2000) Activity-dependent release of endogenous brain-derived neurotrophic factor from primary sensory neurons detected by ELISA in situ. J Neurosci 20:7417-7423.
Blankenship AG, Feller MB (2010) Mechanisms underlying spontaneous patterned activity in developing neural circuits. Nat Rev Neurosci 11:18-29.
Blankenship AG, Ford KJ, Johnson J, Seal RP, Edwards RH, Copenhagen DR, Feller MB (2009) Synaptic and extrasynaptic factors governing glutamatergic retinal waves. Neuron 62:230-241.
Bleckmann SC, Blendy JA, Rudolph D, Monaghan AP, Schmid W, Schutz G (2002) Activating transcription factor 1 and CREB are important for cell survival during early mouse development. Mol Cell Biol 22:1919-1925.
Brushart TM, Hoffman PN, Royall RM, Murinson BB, Witzel C, Gordon T (2002) Electrical stimulation promotes motoneuron regeneration without increasing its speed or conditioning the neuron. The Journal of neuroscience : the official journal of the Society for Neuroscience 22:6631-6638.
Buonanno A, Fields RD (1999) Gene regulation by patterned electrical activity during neural and skeletal muscle development. Curr Opin Neurobiol 9:110-120.
Corredor RG, Goldberg JL (2009) Electrical activity enhances neuronal survival and regeneration. J Neural Eng 6:055001.
Corredor RG, Trakhtenberg EF, Pita-Thomas W, Jin X, Hu Y, Goldberg JL (2012) Soluble adenylyl cyclase activity is necessary for retinal ganglion cell survival and axon growth. J Neurosci 32:7734-7744.
Deogracias R, Espliguero G, Iglesias T, Rodriguez-Pena A (2004) Expression of the neurotrophin receptor trkB is regulated by the cAMP/CREB pathway in neurons. Mol Cell Neurosci 26:470-480.
Fields RD, Neale EA, Nelson PG (1990) Effects of patterned electrical activity on neurite outgrowth from mouse sensory neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience 10:2950-2964.
Firth SI, Wang CT, Feller MB (2005) Retinal waves: mechanisms and function in visual system development. Cell calcium 37:425-432.
Freeman DK, Eddington DK, Rizzo JF, 3rd, Fried SI (2010) Selective activation of neuronal targets with sinusoidal electric stimulation. J Neurophysiol 104:2778-2791.
Gaublomme D, Buyens T, Moons L (2013) Automated analysis of neurite outgrowth in mouse retinal explants. J Biomol Screen 18:534-543.
Geremia NM, Gordon T, Brushart TM, Al-Majed AA, Verge VM (2007) Electrical stimulation promotes sensory neuron regeneration and growth-associated gene expression. Experimental neurology 205:347-359.
Goldberg JL (2012) Role of electrical activity in promoting neural repair. Neurosci Lett 519:134-137.
Goldberg JL, Espinosa JS, Xu Y, Davidson N, Kovacs GT, Barres BA (2002a) Retinal ganglion cells do not extend axons by default: promotion by neurotrophic signaling and electrical activity. Neuron 33:689-702.
Goldberg JL, Klassen MP, Hua Y, Barres BA (2002b) Amacrine-signaled loss of intrinsic axon growth ability by retinal ganglion cells. Science 296:1860-1864.
Gordon T (2009) The role of neurotrophic factors in nerve regeneration. Neurosurg Focus 26:E3.
Gordon T, Udina E, Verge VM, de Chaves EI (2009) Brief electrical stimulation accelerates axon regeneration in the peripheral nervous system and promotes sensory axon regeneration in the central nervous system. Motor control 13:412-441.
Hamid S, Hayek R (2008) Role of electrical stimulation for rehabilitation and regeneration after spinal cord injury: an overview. European spine journal : official publication of the European Spine Society, the European Spinal Deformity Society, and the European Section of the Cervical Spine Research Society 17:1256-1269.
Hennig MH, Adams C, Willshaw D, Sernagor E (2009) Early-stage waves in the retinal network emerge close to a critical state transition between local and global functional connectivity. J Neurosci 29:1077-1086.
Horner PJ, Gage FH (2000) Regenerating the damaged central nervous system. Nature 407:963-970.
Lonze BE, Ginty DD (2002) Function and regulation of CREB family transcription factors in the nervous system. Neuron 35:605-623.
Maccione A, Hennig MH, Gandolfo M, Muthmann O, van Coppenhagen J, Eglen SJ, Berdondini L, Sernagor E (2014) Following the ontogeny of retinal waves: pan-retinal recordings of population dynamics in the neonatal mouse. J Physiol 592:1545-1563.
Martinez J, Stessin AM, Campana A, Hou J, Nikulina E, Buck J, Levin LR, Filbin MT (2014) Soluble adenylyl cyclase is necessary and sufficient to overcome the block of axonal growth by myelin-associated factors. J Neurosci 34:9281-9289.
McLaughlin T, Torborg CL, Feller MB, O'Leary DD (2003) Retinotopic map refinement requires spontaneous retinal waves during a brief critical period of development. Neuron 40:1147-1160.
Meier R, Egert U, Aertsen A, Nawrot MP (2008) FIND--a unified framework for neural data analysis. Neural networks : the official journal of the International Neural Network Society 21:1085-1093.
Meyer-Franke A, Kaplan MR, Pfrieger FW, Barres BA (1995) Characterization of the signaling interactions that promote the survival and growth of developing retinal ganglion cells in culture. Neuron 15:805-819.
Meyer-Franke A, Wilkinson GA, Kruttgen A, Hu M, Munro E, Hanson MG, Jr., Reichardt LF, Barres BA (1998) Depolarization and cAMP elevation rapidly recruit TrkB to the plasma membrane of CNS neurons. Neuron 21:681-693.
Miller CA, Robinson BK, Rubinstein JT, Abbas PJ, Runge-Samuelson CL (2001) Auditory nerve responses to monophasic and biphasic electric stimuli. Hear Res 151:79-94.
Moore DL, Blackmore MG, Hu Y, Kaestner KH, Bixby JL, Lemmon VP, Goldberg JL (2009) KLF family members regulate intrinsic axon regeneration ability. Science 326:298-301.
Moore DL, Goldberg JL (2011) Multiple transcription factor families regulate axon growth and regeneration. Dev Neurobiol 71:1186-1211.
Moritoh S, Tanaka KF, Jouhou H, Ikenaka K, Koizumi A (2010) Organotypic tissue culture of adult rodent retina followed by particle-mediated acute gene transfer in vitro. PLoS One 5:e12917.
Mrsic-Flogel TD, Hofer SB, Creutzfeldt C, Cloez-Tayarani I, Changeux JP, Bonhoeffer T, Hubener M (2005) Altered map of visual space in the superior colliculus of mice lacking early retinal waves. J Neurosci 25:6921-6928.
Muir-Robinson G, Hwang BJ, Feller MB (2002) Retinogeniculate axons undergo eye-specific segregation in the absence of eye-specific layers. J Neurosci 22:5259-5264.
Nicholls J, Saunders N (1996) Regeneration of immature mammalian spinal cord after injury. Trends Neurosci 19:229-234.
Rubinstein JT, Miller CA, Mino H, Abbas PJ (2001) Analysis of monophasic and biphasic electrical stimulation of nerve. IEEE Trans Biomed Eng 48:1065-1070.
Sato T, Fujikado T, Lee TS, Tano Y (2008) Direct effect of electrical stimulation on induction of brain-derived neurotrophic factor from cultured retinal Muller cells. Invest Ophthalmol Vis Sci 49:4641-4646.
Scheiner A, Mortimer JT, Roessmann U (1990) Imbalanced biphasic electrical stimulation: muscle tissue damage. Ann Biomed Eng 18:407-425.
Schmid H, Herrmann T, Kohler K, Stett A (2009) Neuroprotective effect of transretinal electrical stimulation on neurons in the inner nuclear layer of the degenerated retina. Brain Res Bull 79:15-25.
Stellwagen D, Shatz CJ (2002) An instructive role for retinal waves in the development of retinogeniculate connectivity. Neuron 33:357-367.
Stiles TL, Kapiloff MS, Goldberg JL (2014) The role of soluble adenylyl cyclase in neurite outgrowth. Biochim Biophys Acta 1842:2561-2568.
Sun P, Enslen H, Myung PS, Maurer RA (1994) Differential activation of CREB by Ca2+/calmodulin-dependent protein kinases type II and type IV involves phosphorylation of a site that negatively regulates activity. Genes Dev 8:2527-2539.
Syed MM, Lee S, Zheng J, Zhou ZJ (2004) Stage-dependent dynamics and modulation of spontaneous waves in the developing rabbit retina. J Physiol 560:533-549.
Tian N, Copenhagen DR (2003) Visual stimulation is required for refinement of ON and OFF pathways in postnatal retina. Neuron 39:85-96.
West AE, Chen WG, Dalva MB, Dolmetsch RE, Kornhauser JM, Shaywitz AJ, Takasu MA, Tao X, Greenberg ME (2001) Calcium regulation of neuronal gene expression. Proc Natl Acad Sci U S A 98:11024-11031.
West AE, Griffith EC, Greenberg ME (2002) Regulation of transcription factors by neuronal activity. Nat Rev Neurosci 3:921-931.
Zhang LI, Poo MM (2001) Electrical activity and development of neural circuits. Nat Neurosci 4 Suppl:1207-1214.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *