帳號:guest(18.220.233.82)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳鈺婷
作者(外文):Chen, yu ting
論文名稱(中文):人類骨髓間質幹細胞在癌症幹細胞之利基中所扮演的角色
論文名稱(外文):The role of human bone marrow-derived mesenchy-mal stem cells in the cancer stem cell niche
指導教授(中文):李佳霖
指導教授(外文):Lee, Jia Lin
口試委員(中文):張壯榮
王翊青
口試委員(外文):Chang, Chuang Rung
Wang, I Ching
學位類別:碩士
校院名稱:國立清華大學
系所名稱:分子與細胞生物研究所
學號:102080548
出版年(民國):104
畢業學年度:103
語文別:中文
論文頁數:53
中文關鍵詞:癌症幹細胞骨髓間質幹細胞利基旁泌因子
外文關鍵詞:cancer stem cellhuman bone marrow-derived mesenchymal stem cellsnicheparacrine factors
相關次數:
  • 推薦推薦:0
  • 點閱點閱:864
  • 評分評分:*****
  • 下載下載:30
  • 收藏收藏:0
近年研究指出在癌症細胞中具有一群稀有細胞會啟動並促使腫瘤 (tumor) 生長,並誘導腫瘤遠端轉移,且這些幹細胞具有抵抗化療與放射治療的特性,這一小群細胞稱之為「癌症幹細胞(亦稱腫瘤起始細胞)」 (Cancer Stem Cells) 。有些研究指出上皮-間質轉化 (epithelial-mesenchymal transition, EMT) 過程在誘導細胞侵入 (cell invasion) 及細胞轉移 (cell metastasis) 上扮演極關鍵的角色,更可進一步誘導癌細胞獲得幹細胞之特性。細胞內微環境又稱為利基 (niche) ,具有調控癌細胞存活、自我更新 (self-renewal) 及細胞分化 (differentiation) 的作用,且被證實對癌症的進展有重大的影響。近期研究更指出,在腫瘤形成時,骨髓間質幹細胞 (bone marrow-derived mesenchymal stem cells,BM-MSCs) 會被徵募 (recruit) 到產生癌症腫瘤的組織周圍,因此被認為是重要的微環境因素之一,且會透過多條路徑 (pathways) 來調控癌症的轉移,其中包括 IL6/STAT3 (signal transducer and activator of transcription 3, STAT3) 這條訊息傳遞路徑。然而由骨髓間質幹細胞 (Mesenchymal Stem Cells, MSCs) 所製造出的利基,如何誘導肺腺癌上皮細胞 (LM cells) 轉型為癌症幹細胞之過程,所扮演的角色仍然不清楚。
在我們的研究中,骨髓 (human bone marrows , hBMs) 來源為進行關節置換患者所提供,並使用Ficoll (d=1.077) 密度梯度離心法分離出骨髓間質幹細胞。隨後利用流式細胞儀 (flow cytometry) 檢測我們所分離出的骨髓間質幹細胞。接著,收集經由 BM-MSCs所培養的條件培養液 (MSC-conditional medium, MSC-CM) ,去探討是否 MSC-CM 會幫助建構出適合 CSC 生長的利基,並調控 CSC。我們的研究利用 RT-PCR或是 Western blotting 證明 BM-MSCs 所分泌的旁泌因子 (paracrine factors) 不管在中皆會促使低移動性肺腺癌細胞 (LM cell) 的間質標誌 (mesenchymal markers:vimentin及 Twist1) 表現量顯著上升。在抗藥性相關基因,ABC 運輸蛋白家族 (ATP-binding cassette transporters , ABC transporter family) 其表現量也顯著的上升 (包括:ABCA1、ABCB1、及 ABCG1)。而在functional assays中證實,肺癌上皮細胞在加入 MSC-CM 後,其爬行能力及腫瘤球體形成能力明顯的提升。綜合以上結果,經過 MSC-CM 培養後,會促進肺癌上皮細胞形成 CSC。此外,根據 RNA微陣列 (microarray),我們發現到 JAK/STAT3 的標的基因再加入 MSC-CM 都有顯著的上升,藉此我們推論由間質幹細胞所分泌的旁泌因子,會透過 STAT3 這條訊息傳遞路徑建構 CSC 的利基並促進腫瘤發展。在我們研究中,確實發現, MSC-CM 會促使 STAT3 的 Tyr-705 位點磷酸化而活化 STAT3 訊息傳遞路徑。有趣的是,當我們使細胞表現點突變的 STAT3 (mutant STAT3, Y705F) ,可以觀察到由 MSC-CM所誘導的 EMT 現象及獲得 CSC 之性狀即會消失。綜合以上結論,本篇論文證實:骨髓間質幹細胞會透過活化 STAT3 signaling pathway,誘導 LM cells獲得癌症幹細胞性狀。根據此發現,在未來渴望可以找到直接標靶 CSC 的新治療方法及藥物,例如:抗體及蛋白酶抑制劑,藉此突破過去進行治療後仍會復發的現象,渴望成為新一代新穎的治療方式。
Recent evidences indicate that a small subpopulation of cancer cells called cancer stem cells (CSCs) is possible to initiate tumor growth, drive tumor metastasis and lead to drug resistance. In addition, some reports suggest that EMT (epitheli-al-mesenchymal transition), playing an important role in the cancer invasion and me-tastasis, can induce cancer cell to acquire stem-like phenotype. An innovative concept is that the niche has a profound influence on the cancer progression. The niche is a specific microenvironment that regulates cancer cell survival, self-renewal, and dif-ferentiation. In particular, studies have shown that bone marrow-derived mesenchymal stem cells (BM-MSCs) are recruited into tumors and considered regulating cancer metastasis by several signal pathways, including IL6/STAT3 signal. However, the ex-act network of CSC niche created by BM-MSCs is poorly understood.
In this study, human bone marrows (hBMs) were obtained from volunteers, without the history of cancer, undergoing joint arthroplasty surgeries. After isolating hBM-MSCs , we identified the characteristics of isolated BM-MSCs by flow cytome-try. Then, we collected MSC-conditional medium (MSC-CM) to investigate if MSCs help the establishment of CSC niche and promote the CSC properties. The RT-PCR and Western blotting showed that paracrine factors in MSC-CM secreted by BM-MSCs would upregulate mesenchymal markers in epithelial-type cells (LM cells). We also found the ABC transporter genes, related to the ability of drug resistance, were distinctly upregulated (including ABCA1, ABCB1, and ABCG1) after MSC-CM treatment. In the functional assays, we suggested MSC-CM treatment ob-viously promoted migration abilities and sphere forming abilities in LM cells. Taken together, we demonstrate that MSC-CM treatment can elicit the CSC phenotype. Furthermore, according to the microarray data, the target genes of JAK/STAT3 signal pathway were upregulated in LM cells treated with MSC-CM. Therefore, we hypoth-esized paracrine factors secreted by MSCs might establish the CSC niche to promote cancer progression via STAT3 signal pathway. Here, we illustrated that MSC-CM treatment predominantly activated STAT3 transcriptional activity through enhancing phosphorylation of STAT3 (Tyr705). Surprisingly, the EMT and CSC properties in-duced by MSC-CM would be eliminated, after the transfection of mutant STAT3 (Y705F) in LM cells. In conclusion, BM-MSCs can trigger STAT3-elicited promotion of the CSC phenotype. Based on these findings, we look forward to developing new strategies and drugs, such as antibodies and pharmacologic inhibitors, directly target-ing CSCs to improve tumor therapies.
I. 緒論 8
一、 癌症幹細胞 (Cancer stem cells) 簡介 8
1. 前言 8
2. 癌症起源 8
3. 癌症幹細胞的特性 9
4. 癌症幹細胞的篩選 9
二、 上皮-間質轉化 (Epithelial-mesenchymal transition, EMT) 和癌症及癌症幹細胞的關係 10
三、 間質幹細胞 (Bone marrow-derived mesenchymal stem cells, BM-MSCs) 11
1. 前言 11
2. 間質幹細胞與癌症的關係 11
II. 研究動機 13
III. 材料與方法 14
一、 細胞培養 (cell culture) 14
1. 骨髓間質幹細胞萃取 (isolation) 14
2. 細胞繼代培養 14
3. 凍細胞 15
4. 細胞轉染 (cell transfection) 15
二、 流式細胞儀分析間質幹細胞表面抗原 (surface marker) 16
1. 間質幹細胞之抗體 16
2. 流式細胞儀前置步驟 17
三、 骨髓間幹細胞條件培養液 (MSC-conditional medium, MSC-CM) 收集 17
四、 西方墨點法 (Western blotting) 17
1. 萃取細胞總蛋白質 (total cell lysate) 17
2. 蛋白質濃度定量 18
3. 西方墨點法 (Western blotting) 18
反轉錄聚合酶連鎖反應 (RT-PCR) 19
五、 19
1. 總核糖核酸萃取 (total RNA extraction) 19
2. RNA定量分析 (quantification of total mRNA) 19
3. mRNA反轉錄 (reverse transcription) 及聚合酶鏈鎖反應 19
六、 螢火蟲冷光活性方法 (luciferase reporter assay) 20
七、 傷口癒合試驗 (wound healing assay) 20
腫瘤球體形成篩選 (sphere forming assays) 21
八、 21
IV. 實驗結果 22
一、 人體萃取之骨髓間質幹細胞的鑑定 22
二、 經骨髓間質幹細胞條件培養液 (MSC-conditional medium, MSC-CM) 培養之肺腺癌上皮細胞 (LM cells) 其RNA微陣列數據分析 23
三、 骨髓間質幹細胞於條件培養液中所分泌之旁泌因子 (paracrine factors) 促使低移動性肺癌上皮細胞 (LM cells) 進行上皮-間質轉化 (Epithelial-mesenchymal transition,EMT) 且增加其移動能力 (migration ability) 24
四、 骨髓間質幹細胞於條件培養液中所分泌之旁泌因子 (paracrine factors) 促使肺腺癌上皮細胞 (LM cells) 獲得癌症幹細胞之性狀 (cancer stem cells phenotype) 25
五、 透過基因調控網路之建構,鎖定JAK/STAT3訊息傳遞路徑 (signal transduction pathway),可能於骨髓間質幹細胞所誘導之癌症幹細胞形成過程中扮演關鍵角色 26
六、 骨髓間質幹細胞透過活化 STAT3 此訊息傳遞路徑,使肺癌上皮細胞 (LM cells) 進行上皮-間質轉化 (Epithelial-mesenchymal transition, EMT) 且增加其移動能力 (migration ability) 27
七、 骨髓間質幹細胞透過活化 STAT3 訊息傳遞路徑,誘導肺癌上皮細胞 (LM cells) 獲得癌症幹細胞之性狀 (CSCs phenotype) 29
V. 實驗討論 31
VI. 文獻參考 36
VII. 圖表與圖表說明 40
1. Lapidot, T., et al., A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature, 1994. 367(6464): p. 645-8.
2. Al-Hajj, M., et al., Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A, 2003. 100(7): p. 3983-8.
3. Singh, S.K., et al., Identification of a cancer stem cell in human brain tumors. Cancer Res, 2003. 63(18): p. 5821-8.
4. Hanahan, D. and R.A. Weinberg, The hallmarks of cancer. Cell, 2000. 100(1): p. 57-70.
5. Reya, T., et al., Stem cells, cancer, and cancer stem cells. Nature, 2001. 414(6859): p. 105-11.
6. Ward, R.J. and P.B. Dirks, Cancer stem cells: at the headwaters of tumor development. Annu Rev Pathol, 2007. 2: p. 175-89.
7. Grosse-Gehling, P., et al., CD133 as a biomarker for putative cancer stem cells in solid tumours: limitations, problems and challenges. J Pathol, 2013. 229(3): p. 355-78.
8. Visvader, J.E. and G.J. Lindeman, Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat Rev Cancer, 2008. 8(10): p. 755-68.
9. Huber, M.A., N. Kraut, and H. Beug, Molecular requirements for epithelial-mesenchymal transition during tumor progression. Curr Opin Cell Biol, 2005. 17(5): p. 548-58.
10. Papageorgis, P., TGFbeta Signaling in Tumor Initiation, Epithelial-to-Mesenchymal Transition, and Metastasis. J Oncol, 2015. 2015: p. 587193.
11. Thiery, J.P., et al., Epithelial-mesenchymal transitions in development and disease. Cell, 2009. 139(5): p. 871-90.
12. Yu, Z., et al., Cancer stem cells. Int J Biochem Cell Biol, 2012. 44(12): p. 2144-51.
13. Cheng, G.Z., et al., Twist transcriptionally up-regulates AKT2 in breast cancer cells leading to increased migration, invasion, and resistance to paclitaxel. Cancer Res, 2007. 67(5): p. 1979-87.
14. Vesuna, F., et al., Twist modulates breast cancer stem cells by transcriptional regulation of CD24 expression. Neoplasia, 2009. 11(12): p. 1318-28.
15. Barcellos-de-Souza, P., et al., Tumor microenvironment: bone marrow-mesenchymal stem cells as key players. Biochim Biophys Acta, 2013. 1836(2): p. 321-35.
16. Fukuchi, Y., et al., Human placenta-derived cells have mesenchymal stem/progenitor cell potential. Stem Cells, 2004. 22(5): p. 649-58.
17. Ljujic, B., et al., Human mesenchymal stem cells creating an immunosuppressive environment and promote breast cancer in mice. Sci Rep, 2013. 3: p. 2298.
18. Dominici, M., et al., Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, 2006. 8(4): p. 315-7.
19. Woodbury, D., et al., Adult rat and human bone marrow stromal cells differentiate into neurons. J Neurosci Res, 2000. 61(4): p. 364-70.
20. Bernardo, M.E. and W.E. Fibbe, Mesenchymal stromal cells and hematopoietic stem cell transplantation. Immunol Lett, 2015.
21. Evans, J.F., et al., Mouse aorta-derived mesenchymal progenitor cells contribute to and enhance the immune response of macrophage cells under inflammatory conditions. Stem Cell Res Ther, 2015. 6: p. 56.
22. Pountos, I., et al., Mesenchymal stem cell tissue engineering: techniques for isolation, expansion and application. Injury, 2007. 38 Suppl 4: p. S23-33.
23. Torsvik, A. and R. Bjerkvig, Mesenchymal stem cell signaling in cancer progression. Cancer Treat Rev, 2013. 39(2): p. 180-8.
24. Hall, B., et al., Mesenchymal stem cells in cancer: tumor-associated fibroblasts and cell-based delivery vehicles. Int J Hematol, 2007. 86(1): p. 8-16.
25. Polanska, U.M. and A. Orimo, Carcinoma-associated fibroblasts: non-neoplastic tumour-promoting mesenchymal cells. J Cell Physiol, 2013. 228(8): p. 1651-7.
26. Liu, S., et al., Breast cancer stem cells are regulated by mesenchymal stem cells through cytokine networks. Cancer Res, 2011. 71(2): p. 614-24.
27. Hsu, H.S., et al., Mesenchymal stem cells enhance lung cancer initiation through activation of IL-6/JAK2/STAT3 pathway. Lung Cancer, 2012. 75(2): p. 167-77.
28. Gnecchi, M. and L.G. Melo, Bone marrow-derived mesenchymal stem cells: isolation, expansion, characterization, viral transduction, and production of conditioned medium. Methods Mol Biol, 2009. 482: p. 281-94.
29. Buhring, H.J., et al., Novel markers for the prospective isolation of human MSC. Ann N Y Acad Sci, 2007. 1106: p. 262-71.
30. Lee, O.K., et al., Isolation of multipotent mesenchymal stem cells from umbilical cord blood. Blood, 2004. 103(5): p. 1669-75.
31. Kansy, B.A., et al., The bidirectional tumor--mesenchymal stromal cell interaction promotes the progression of head and neck cancer. Stem Cell Res Ther, 2014. 5(4): p. 95.
32. Dean, M., ABC transporters, drug resistance, and cancer stem cells. J Mammary Gland Biol Neoplasia, 2009. 14(1): p. 3-9.
33. Ishii, H., et al., Cancer stem cells and chemoradiation resistance. Cancer Sci, 2008. 99(10): p. 1871-7.
34. Lou, H. and M. Dean, Targeted therapy for cancer stem cells: the patched pathway and ABC transporters. Oncogene, 2007. 26(9): p. 1357-60.
35. Draghici, S., et al., A systems biology approach for pathway level analysis. Genome Res, 2007. 17(10): p. 1537-45.
36. Ideker, T., T. Galitski, and L. Hood, A new approach to decoding life: systems biology. Annu Rev Genomics Hum Genet, 2001. 2: p. 343-72.
37. Rawlings, J.S., K.M. Rosler, and D.A. Harrison, The JAK/STAT signaling pathway. J Cell Sci, 2004. 117(Pt 8): p. 1281-3.
38. Sullivan, N.J., et al., Interleukin-6 induces an epithelial-mesenchymal transition phenotype in human breast cancer cells. Oncogene, 2009. 28(33): p. 2940-7.
39. Yadav, A., et al., IL-6 promotes head and neck tumor metastasis by inducing epithelial-mesenchymal transition via the JAK-STAT3-SNAIL signaling pathway. Mol Cancer Res, 2011. 9(12): p. 1658-67.
40. Bao, S., et al., Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature, 2006. 444(7120): p. 756-60.
41. Hope, K.J., L. Jin, and J.E. Dick, Acute myeloid leukemia originates from a hierarchy of leukemic stem cell classes that differ in self-renewal capacity. Nat Immunol, 2004. 5(7): p. 738-43.
42. Borovski, T., et al., Cancer stem cell niche: the place to be. Cancer Res, 2011. 71(3): p. 634-9.
43. Calabrese, C., et al., A perivascular niche for brain tumor stem cells. Cancer Cell, 2007. 11(1): p. 69-82.
44. Hovinga, K.E., et al., Inhibition of notch signaling in glioblastoma targets cancer stem cells via an endothelial cell intermediate. Stem Cells, 2010. 28(6): p. 1019-29.
45. Hall, B., M. Andreeff, and F. Marini, The participation of mesenchymal stem cells in tumor stroma formation and their application as targeted-gene delivery vehicles. Handb Exp Pharmacol, 2007(180): p. 263-83.
46. Karnoub, A.E., et al., Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature, 2007. 449(7162): p. 557-63.
47. Martin, F.T., et al., Potential role of mesenchymal stem cells (MSCs) in the breast tumour microenvironment: stimulation of epithelial to mesenchymal transition (EMT). Breast Cancer Res Treat, 2010. 124(2): p. 317-26.
48. Hollestelle, A., et al., Loss of E-cadherin is not a necessity for epithelial to mesenchymal transition in human breast cancer. Breast Cancer Res Treat, 2013. 138(1): p. 47-57.
49. Yang, J., et al., Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell, 2004. 117(7): p. 927-39.
50. Kwok, W.K., et al., Up-regulation of TWIST in prostate cancer and its implication as a therapeutic target. Cancer Res, 2005. 65(12): p. 5153-62.
51. Chang, C.J., et al., Inhibition of phosphorylated STAT3 by cucurbitacin I enhances chemoradiosensitivity in medulloblastoma-derived cancer stem cells. Childs Nerv Syst, 2012. 28(3): p. 363-73.
52. Zhuang, S., Regulation of STAT signaling by acetylation. Cell Signal, 2013. 25(9): p. 1924-31.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

1. 骨髓間質幹細胞有助於異質性癌症幹細胞利基形成並促進癌症轉移
2. 抑制Rho激酶-肌球蛋白II路徑對於誘導人類胚胎幹細胞衍生間葉前驅細胞產生神經型態之探討
3. 分泌型Frizzled相關蛋白1和3對Wnt訊號傳導路徑調控癌細胞的幹細胞特性和腫瘤新生能力中所造成的影響
4. sFRP4 (secreted Frizzled-related protein 4) 在Wnt訊息傳遞誘發轉型為癌症幹細胞過程所扮演的角色
5. 異常細胞核內表現的SFRPs在Wnt/β-catenin誘發增加癌症幹細胞特性所扮演的角色
6. 鑑別在上皮-間質轉化期間 β-catenin 之相異目標並藉此定義癌幹細胞族群與預測腫瘤復發可能性
7. 癌症幹細胞表面標記在癌幹特性、腫瘤形成與轉移所扮演的角色
8. 結合高度正相關GRB2 和 14-3-3θ新癌幹細胞標記提供較準確的大腸癌預後情形
9. 藉由間質幹細胞分泌的外泌體所轉移至癌細胞的RNAs/蛋白質能夠調控其癌症幹細胞的特性
10. CRISPR/Cas9藉由基因體和表觀基因組的編輯精準地調節癌症幹細胞相關基因表達
11. 14-3-3θ通過Stat3途徑逆轉上皮-間質轉化, 以允許腫瘤在轉移部位的生長和定殖
12. 飢餓環境下誘導的M-Sec透過促進奈米隧道管形成以增加癌症幹細胞之特性
13. 間質幹細胞透過細胞間通道促進肺癌細胞產生癌症幹細胞的表型
14. 探討分泌性捲曲蛋白與肺癌幹細胞特性的關聯性
15. 探討STAT3不同轉錄後修飾對於肺癌癌幹細胞特性的調控
 
* *