帳號:guest(18.223.196.180)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):詹佳青
作者(外文):Chan,Chia-Ching
論文名稱(中文):Signaling of unfolded protein response in derlin-1-mediated neurodegeneration
論文名稱(外文):探討derlin-1透過UPR所引起的神經退化
指導教授(中文):桑自剛
指導教授(外文):Sang,Tzu-Kang
口試委員(中文):徐瑞洲
張慧雲
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生物科技研究所
學號:102080544
出版年(民國):104
畢業學年度:103
語文別:英文
論文頁數:59
中文關鍵詞:內質網激應derlin-1錯誤摺疊蛋白
外文關鍵詞:ER stressderlin-1unfolded protein respond
相關次數:
  • 推薦推薦:0
  • 點閱點閱:66
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
內質網(ER)是一個負責調控細胞內鈣離子平衡及儲存分泌性蛋白和膜蛋白的重要胞器, 因此當鈣離子失去平衡或是錯誤折疊蛋白堆積在內質網內,就會引發ER stress並藉由活化unfolded protein response (UPR)下游反應來調節內質網內的平衡。目前已知UPR透過起始下游的三條訊息傳遞鏈IRE1、PERK 和ATF6,去調控細胞適應ER stress或是死亡。在哺乳類動物中,Derlin-1這個位於ER 膜上的通道蛋白可以將摺疊的蛋白送出ER,利用ERAD的機制將這些不正常蛋白降解。在實驗室先前的研究中,我們發現過度表現Derlin-1,可以造成果蠅眼睛的退化並且活化UPR。當餵食tunicamycin或是給予cold shock刺激果蠅,使其產生ER stress時,我們發現Derlin-1的表現量也明顯上升,這證明了Derlin-1可能參與在UPR的下游反應,進而促使細胞凋亡。為了更了解Derlin-1與UPR之間的關連,我們利用western blotting分析並發現了PERK和ATF6可能造成ER stress時Derlin-1的上升。我們進一步利用遺傳方式分析果蠅的UPR訊息傳遞鏈去找尋Derlin-1參與在UPR下的機制。根據結果推斷,我們認為PERK-eIF2α下游的GADD34可能影響Derlin-1所引起的細胞凋亡機制,我們的實驗結果也指出PERK的訊息傳遞鏈可以決定ER stress情況下的細胞命運。這個研究可以讓我們進一步了解ER stress的調控,且有助於發展ER stress相關疾病的治療方法。
Endoplasmic reticulum (ER) is an important organelle that stores the intracellular calcium and manufactures secretory and membrane proteins. When the ER calcium homeostasis or the protein biosynthesis is disturbed, accumulation of misfolded proteins obstructs the ER homeostasis, which could activate the intracellular signaling pathways termed the unfolded protein response (UPR). Current knowledge distinguishes UPR as three signaling pathways, IRE1α (inositol-requiring protein-1α), PERK (protein kinase RNA (PKR)-like ER kinase), and ATF6 (activating transcription factor 6). These three pathways regulate the fate of those cells under the ER stress to either strive for adaptation or commit for apoptosis. In mammal, Derlin-1 (Der1-like domain family, member 1) is an integral ER membrane protein that functions as a retro-translocation channel to help misfolded ER proteins crossing the membrane for proteasome degradation, a process known as endoplasmic reticulum-associated protein degradation (ERAD). In a Drosophila model, we found that overexpression of fly Derlin-1 causes eye degeneration, a phenotype also coincide with the UPR activation. As Derlin-1 expression level is increased upon ER stressor tunicamycin treatment or cold shock condition, this data suggest that Derlin-1 may involve in UPR pathway to promote cell apoptosis. To further investigate the relationship of Derlin-1 and UPR, I performed Western blotting and the data suggests that PERK and ATF6 might contribute to Derlin-1 increasing upon ER stress. I used genetic approach aiming to delineate Derlin-1 regulation in the UPR pathway and apoptosis, and identified Derlin-1-mediated cell death is closely associated with GADD34, a gene downstream of the PERK-eIF2α pathway. Our data indicate that ER stress-induced signaling may exploit Derlin-1 and PERK pathway to control the cell fate determination. This study could advance our understanding on ER stress regulation, and potentially benefit the development of new clinical strategies for ER-stress related diseases.
Introduction 1
Materials and methods 6
Drosophila genetics and molecular biology 6
Cloning and construct of the transgenic plasmid 6
Scanning electron micrographs 6
Immunohistochemistry 7
Tunicamycin (TM) treatment 7
Heat shock condition 8
Cold shock condition 8
Drosophila protein extraction 8
Immunoblotting analysis 9
mRNA extraction and RT-PCR analysis 9
Results 11
Aberrant Derlin-1 expression causes ERAD defect and cytotoxicity 11
Derlin-1 is an essential gene 12
Overexpressing Derlin-1 caused rough eye phenotype is associated with the activation of apoptotic cell death 13
Derlin-1 responds to ER stress and involves in UPR pathway to promote cell death 15
PERK and ATF6 pathway may regulate Derlin-1-mediated apoptosis 17
PERK pathway protein GADD34 modifies Derlin-1-mediated neurodegeneration 18
GADD34 modulates Derlin-1-induced apoptosis 20
Akt is a potent pro-survival regulator in Derlin-1-mediated apoptosis 22
Discussion 24
PERK is required during development 24
Overexpressing of elF2α could suppress Derlin-1-mediated cytotoxicity 25
The relationship between GADD34 and PP1 26
Figure 28
Appendix 48
References 55
Adler, H.T., Chinery, R., Wu, D.Y., Kussick, S.J., Payne, J.M., Fornace, A.J., and Tkachuk, D.C. (1999). Leukemic HRX fusion proteins inhibit GADD34-induced apoptosis and associate with the GADD34 and hSNF5/INI1 proteins. Mol. Cell. Biol. 19, 7050–7060.
Braakman, I., and Bulleid, N.J. (2011). Protein folding and modification in the mammalian endoplasmic reticulum. Annu. Rev. Biochem. 80, 71–99.
Brush, M.H., Weiser, D.C., and Shenolikar, S. (2003). Growth arrest and DNA damage-inducible protein GADD34 targets protein phosphatase 1 alpha to the endoplasmic reticulum and promotes dephosphorylation of the alpha subunit of eukaryotic translation initiation factor 2. Mol. Cell. Biol. 23, 1292–1303.
Carvalho, P., Goder, V., and Rapoport, T.A. (2006). Distinct ubiquitin-ligase complexes define convergent pathways for the degradation of ER proteins. Cell 126, 361–373.
Chow, C.Y., Wolfner, M.F., and Clark, A.G. (2013). Using natural variation in Drosophila to discover previously unknown endoplasmic reticulum stress genes. Proc. Natl. Acad. Sci. U. S. A. 110, 9013–9018.
Choy, M.S., Yusoff, P., Lee, I.C., Newton, J.C., Goh, C.W., Page, R., Shenolikar, S., and Peti, W. (2015). Structural and Functional Analysis of the GADD34:PP1 eIF2α Phosphatase. Cell Rep. 11, 1885–1891.
Dombrádi, V., Mann, D.J., Saunders, R.D., and Cohen, P.T. (1993). Cloning of the fourth functional gene for protein phosphatase 1 in Drosophila melanogaster from its chromosomal location. Eur. J. Biochem. FEBS 212, 177–183.
Ellgaard, L., and Helenius, A. (2003). Quality control in the endoplasmic reticulum. Nat. Rev. Mol. Cell Biol. 4, 181–191.
Farook, J.M., Shields, J., Tawfik, A., Markand, S., Sen, T., Smith, S.B., Brann, D., Dhandapani, K.M., and Sen, N. (2013). GADD34 induces cell death through inactivation of Akt following traumatic brain injury. Cell Death Dis. 4, e754.
Garrido, J.L., Maruo, S., Takada, K., and Rosendorff, A. (2009). EBNA3C interacts with Gadd34 and counteracts the unfolded protein response. Virol. J. 6, 231.
Gauthier, S.A., VanHaaften, E., Cherbas, L., Cherbas, P., and Hewes, R.S. (2012). Cryptocephal, the Drosophila melanogaster ATF4, is a specific coactivator for ecdysone receptor isoform B2. PLoS Genet. 8, e1002883.
Girardot, F., Monnier, V., and Tricoire, H. (2004). Genome wide analysis of common and specific stress responses in adult drosophila melanogaster. BMC Genomics 5, 74.
Greenblatt, E.J., Olzmann, J.A., and Kopito, R.R. (2011). Derlin-1 is a rhomboid pseudoprotease required for the dislocation of mutant α-1 antitrypsin from the endoplasmic reticulum. Nat. Struct. Mol. Biol. 18, 1147–1152.
Gu, M., Ouyang, C., Lin, W., Zhang, T., Cao, X., Xia, Z., and Wang, X. (2014). Phosphatase holoenzyme PP1/GADD34 negatively regulates TLR response by inhibiting TAK1 serine 412 phosphorylation. J. Immunol. Baltim. Md 1950 192, 2846–2856.
Guan, B.-J., Krokowski, D., Majumder, M., Schmotzer, C.L., Kimball, S.R., Merrick, W.C., Koromilas, A.E., and Hatzoglou, M. (2014). Translational control during endoplasmic reticulum stress beyond phosphorylation of the translation initiation factor eIF2α. J. Biol. Chem. 289, 12593–12611.
Gupta, S., Deepti, A., Deegan, S., Lisbona, F., Hetz, C., and Samali, A. (2010). HSP72 protects cells from ER stress-induced apoptosis via enhancement of IRE1alpha-XBP1 signaling through a physical interaction. PLoS Biol. 8, e1000410.
Harding, H.P., Zeng, H., Zhang, Y., Jungries, R., Chung, P., Plesken, H., Sabatini, D.D., and Ron, D. (2001). Diabetes mellitus and exocrine pancreatic dysfunction in perk-/- mice reveals a role for translational control in secretory cell survival. Mol. Cell 7, 1153–1163.
Iwasaki, N., Sugiyama, Y., Miyazaki, S., Nakagawa, H., Nishimura, K., and Matsuo, S. (2015). An ATF4-Signal-Modulating Machine Other Than GADD34 Acts in ATF4-to-CHOP Signaling to Block CHOP Expression in ER-Stress-Related Autophagy. J. Cell. Biochem. 116, 1300–1309.
Jaronen, M., Goldsteins, G., and Koistinaho, J. (2014). ER stress and unfolded protein response in amyotrophic lateral sclerosis-a controversial role of protein disulphide isomerase. Front. Cell. Neurosci. 8, 402.
Kazemi, S., Mounir, Z., Baltzis, D., Raven, J.F., Wang, S., Krishnamoorthy, J.-L., Pluquet, O., Pelletier, J., and Koromilas, A.E. (2007). A novel function of eIF2alpha kinases as inducers of the phosphoinositide-3 kinase signaling pathway. Mol. Biol. Cell 18, 3635–3644.
Kepp, O., Galluzzi, L., Giordanetto, F., Tesniere, A., Vitale, I., Martins, I., Schlemmer, F., Adjemian, S., Zitvogel, L., and Kroemer, G. (2009). Disruption of the PP1/GADD34 complex induces calreticulin exposure. Cell Cycle Georget. Tex 8, 3971–3977.
Kirchner, J., Gross, S., Bennett, D., and Alphey, L. (2007). Essential, overlapping and redundant roles of the Drosophila protein phosphatase 1 alpha and 1 beta genes. Genetics 176, 273–281.
Knop, M., Finger, A., Braun, T., Hellmuth, K., and Wolf, D.H. (1996). Der1, a novel protein specifically required for endoplasmic reticulum degradation in yeast. EMBO J. 15, 753–763.
Kumar, R., Azam, S., Sullivan, J.M., Owen, C., Cavener, D.R., Zhang, P., Ron, D., Harding, H.P., Chen, J.J., Han, A., et al. (2001). Brain ischemia and reperfusion activates the eukaryotic initiation factor 2alpha kinase, PERK. J. Neurochem. 77, 1418–1421.
Lilley, B.N., and Ploegh, H.L. (2004). A membrane protein required for dislocation of misfolded proteins from the ER. Nature 429, 834–840.
Lu, Y., Lv, Y., Ye, Y., Wang, Y., Hong, Y., Fortini, M.E., Zhong, Y., and Xie, Z. (2007). A role for presenilin in post-stress regulation: effects of presenilin mutations on Ca2+ currents in Drosophila. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 21, 2368–2378.
Malzer, E., Daly, M.-L., Moloney, A., Sendall, T.J., Thomas, S.E., Ryder, E., Ryoo, H.D., Crowther, D.C., Lomas, D.A., and Marciniak, S.J. (2010). Impaired tissue growth is mediated by checkpoint kinase 1 (CHK1) in the integrated stress response. J. Cell Sci. 123, 2892–2900.
McCracken, A.A., and Brodsky, J.L. (1996). Assembly of ER-associated protein degradation in vitro: dependence on cytosol, calnexin, and ATP. J. Cell Biol. 132, 291–298.
Menéndez-Benito, V., Verhoef, L.G.G.C., Masucci, M.G., and Dantuma, N.P. (2005). Endoplasmic reticulum stress compromises the ubiquitin-proteasome system. Hum. Mol. Genet. 14, 2787–2799.
Meusser, B., Hirsch, C., Jarosch, E., and Sommer, T. (2005). ERAD: the long road to destruction. Nat. Cell Biol. 7, 766–772.
Nishitoh, H., Kadowaki, H., Nagai, A., Maruyama, T., Yokota, T., Fukutomi, H., Noguchi, T., Matsuzawa, A., Takeda, K., and Ichijo, H. (2008). ALS-linked mutant SOD1 induces ER stress- and ASK1-dependent motor neuron death by targeting Derlin-1. Genes Dev. 22, 1451–1464.
Raciti, M., Lotti, L.V., Valia, S., Pulcinelli, F.M., and Di Renzo, L. (2012). JNK2 is activated during ER stress and promotes cell survival. Cell Death Dis. 3, e429.
Rajesh, K., Krishnamoorthy, J., Kazimierczak, U., Tenkerian, C., Papadakis, A.I., Wang, S., Huang, S., and Koromilas, A.E. (2015). Phosphorylation of the translation initiation factor eIF2α at serine 51 determines the cell fate decisions of Akt in response to oxidative stress. Cell Death Dis. 6, e1591.
Ron, D., and Walter, P. (2007). Signal integration in the endoplasmic reticulum unfolded protein response. Nat. Rev. Mol. Cell Biol. 8, 519–529.
Ryoo, H.D., Domingos, P.M., Kang, M.-J., and Steller, H. (2007). Unfolded protein response in a Drosophila model for retinal degeneration. EMBO J. 26, 242–252.
Sano, R., and Reed, J.C. (2013). ER stress-induced cell death mechanisms. Biochim. Biophys. Acta 1833, 3460–3470.
Schröder, M., and Kaufman, R.J. (2005). ER stress and the unfolded protein response. Mutat. Res. 569, 29–63.
Sreesankar, E., Bharathi, V., Mishra, R.K., and Mishra, K. (2015). Drosophila Rif1 is an essential gene and controls late developmental events by direct interaction with PP1-87B. Sci. Rep. 5, 10679.
Tay, K.H., Luan, Q., Croft, A., Jiang, C.C., Jin, L., Zhang, X.D., and Tseng, H.-Y. (2014). Sustained IRE1 and ATF6 signaling is important for survival of melanoma cells undergoing ER stress. Cell. Signal. 26, 287–294.
Theodosiou, N.A., and Xu, T. (1998). Use of FLP/FRT system to study Drosophila development. Methods San Diego Calif 14, 355–365.
Tomlinson, A., and Ready, D.F. (1987). Neuronal differentiation in Drosophila ommatidium. Dev. Biol. 120, 366–376.
Travers, K.J., Patil, C.K., Wodicka, L., Lockhart, D.J., Weissman, J.S., and Walter, P. (2000). Functional and genomic analyses reveal an essential coordination between the unfolded protein response and ER-associated degradation. Cell 101, 249–258.
Vashist, S., and Ng, D.T.W. (2004). Misfolded proteins are sorted by a sequential checkpoint mechanism of ER quality control. J. Cell Biol. 165, 41–52.
Vincenz, L., Jäger, R., O’Dwyer, M., and Samali, A. (2013). Endoplasmic reticulum stress and the unfolded protein response: targeting the Achilles heel of multiple myeloma. Mol. Cancer Ther. 12, 831–843.
Wang, L., Popko, B., and Roos, R.P. (2014). An enhanced integrated stress response ameliorates mutant SOD1-induced ALS. Hum. Mol. Genet. 23, 2629–2638.
Wolff, T., and Ready, D.F. (1991). The beginning of pattern formation in the Drosophila compound eye: the morphogenetic furrow and the second mitotic wave. Dev. Camb. Engl. 113, 841–850.
Yamaguchi, Y., Larkin, D., Lara-Lemus, R., Ramos-Castañeda, J., Liu, M., and Arvan, P. (2008). Endoplasmic reticulum (ER) chaperone regulation and survival of cells compensating for deficiency in the ER stress response kinase, PERK. J. Biol. Chem. 283, 17020–17029.
Yang, M., Omura, S., Bonifacino, J.S., and Weissman, A.M. (1998). Novel aspects of degradation of T cell receptor subunits from the endoplasmic reticulum (ER) in T cells: importance of oligosaccharide processing, ubiquitination, and proteasome-dependent removal from ER membranes. J. Exp. Med. 187, 835–846.
Ye, J., Rawson, R.B., Komuro, R., Chen, X., Davé, U.P., Prywes, R., Brown, M.S., and Goldstein, J.L. (2000). ER stress induces cleavage of membrane-bound ATF6 by the same proteases that process SREBPs. Mol. Cell 6, 1355–1364.
Ye, Y., Shibata, Y., Yun, C., Ron, D., and Rapoport, T.A. (2004). A membrane protein complex mediates retro-translocation from the ER lumen into the cytosol. Nature 429, 841–847.
Yin, J., Gu, L., Wang, Y., Fan, N., Ma, Y., and Peng, Y. (2015). Rapamycin improves palmitate-induced ER stress/NF κ B pathways associated with stimulating autophagy in adipocytes. Mediators Inflamm. 2015, 272313.
Zhang, P., McGrath, B., Li, S., Frank, A., Zambito, F., Reinert, J., Gannon, M., Ma, K., McNaughton, K., and Cavener, D.R. (2002). The PERK eukaryotic initiation factor 2 alpha kinase is required for the development of the skeletal system, postnatal growth, and the function and viability of the pancreas. Mol. Cell. Biol. 22, 3864–3874.
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *