|
1. Jemal, A., Bray, F., Center, M.M., Ferlay, J., Ward, E. & Forman, D. Global cancer statistics. CA: a Cancer Journal for Clinicians 61, 69-90 (2011). 2. El-Serag, H.B. Epidemiology of viral hepatitis and hepatocellular carcinoma. Gastroenterology 142, 1264-1273 e1261 (2012). 3. Seeger, C. & Mason, W.S. Hepatitis B virus biology. Microbiology and Molecular Biology Reviews 64, 51-68 (2000). 4. Chang, J.J. & Lewin, S.R. Immunopathogenesis of hepatitis B virus infection. Immunology and Cell Biology 85, 16-23 (2007). 5. Farazi, P.A. & DePinho, R.A. Hepatocellular carcinoma pathogenesis: from genes to environment. Nature Reviews. Cancer 6, 674-687 (2006). 6. Block, T.M., Mehta, A.S., Fimmel, C.J. & Jordan, R. Molecular viral oncology of hepatocellular carcinoma. Oncogene 22, 5093-5107 (2003). 7. Rudolph, K.L., Chang, S., Millard, M., Schreiber-Agus, N. & DePinho, R.A. Inhibition of experimental liver cirrhosis in mice by telomerase gene delivery. Science 287, 1253-1258 (2000). 8. Hartmann, D., Srivastava, U., Thaler, M., Kleinhans, K.N., N'Kontchou, G., Scheffold, A., Bauer, K., Kratzer, R.F., Kloos, N., Katz, S.F., Song, Z., Begus-Nahrmann, Y., Kleger, A., von Figura, G., Strnad, P., Lechel, A., Gunes, C., Potthoff, A., Deterding, K., Wedemeyer, H., Ju, Z., Song, G., Xiao, F., Gillen, S., Schrezenmeier, H., Mertens, T., Ziol, M., Friess, H., Jarek, M., Manns, M.P., Beaugrand, M. & Rudolph, K.L. Telomerase gene mutations are associated with cirrhosis formation. Hepatology 53, 1608-1617 (2011). 9. Wang, Y., Lau, S.H., Sham, J.S., Wu, M.C., Wang, T. & Guan, X.Y. Characterization of HBV integrants in 14 hepatocellular carcinomas: association of truncated X gene and hepatocellular carcinogenesis. Oncogene 23, 142-148 (2004). 10. Kremsdorf, D., Soussan, P., Paterlini-Brechot, P. & Brechot, C. Hepatitis B virus-related hepatocellular carcinoma: paradigms for viral-related human carcinogenesis. Oncogene 25, 3823-3833 (2006). 11. Murakami, Y., Saigo, K., Takashima, H., Minami, M., Okanoue, T., Brechot, C. & Paterlini-Brechot, P. Large scaled analysis of hepatitis B virus (HBV) DNA integration in HBV related hepatocellular carcinomas. Gut 54, 1162-1168 (2005). 12. Paterlini-Brechot, P., Saigo, K., Murakami, Y., Chami, M., Gozuacik, D., Mugnier, C., Lagorce, D. & Brechot, C. Hepatitis B virus-related insertional mutagenesis occurs frequently in human liver cancers and recurrently targets human telomerase gene. Oncogene 22, 3911-3916 (2003). 13. Hohne, M., Schaefer, S., Seifer, M., Feitelson, M.A., Paul, D. & Gerlich, W.H. Malignant transformation of immortalized transgenic hepatocytes after transfection with hepatitis B virus DNA. The EMBO Journal 9, 1137-1145 (1990). 14. Seifer, M., Hohne, M., Schaefer, S. & Gerlich, W.H. In vitro tumorigenicity of hepatitis B virus DNA and HBx protein. Journal of Hepatology 13 Suppl 4, S61-65 (1991). 15. Wang, X.W., Forrester, K., Yeh, H., Feitelson, M.A., Gu, J.R. & Harris, C.C. Hepatitis B virus X protein inhibits p53 sequence-specific DNA binding, transcriptional activity, and association with transcription factor ERCC3. Proceedings of the National Academy of Sciences of the United States of America 91, 2230-2234 (1994). 16. Truant, R., Antunovic, J., Greenblatt, J., Prives, C. & Cromlish, J.A. Direct interaction of the hepatitis B virus HBx protein with p53 leads to inhibition by HBx of p53 response element-directed transactivation. Journal of Virology 69, 1851-1859 (1995). 17. Becker, S.A., Lee, T.H., Butel, J.S. & Slagle, B.L. Hepatitis B virus X protein interferes with cellular DNA repair. Journal of Virology 72, 266-272 (1998). 18. Groisman, I.J., Koshy, R., Henkler, F., Groopman, J.D. & Alaoui-Jamali, M.A. Downregulation of DNA excision repair by the hepatitis B virus-x protein occurs in p53-proficient and p53-deficient cells. Carcinogenesis 20, 479-483 (1999). 19. Lee, A.T., Ren, J., Wong, E.T., Ban, K.H., Lee, L.A. & Lee, C.G. The hepatitis B virus X protein sensitizes HepG2 cells to UV light-induced DNA damage. The Journal of Biological Chemistry 280, 33525-33535 (2005). 20. Wang, X.W., Gibson, M.K., Vermeulen, W., Yeh, H., Forrester, K., Sturzbecher, H.W., Hoeijmakers, J.H. & Harris, C.C. Abrogation of p53-induced apoptosis by the hepatitis B virus X gene. Cancer Research 55, 6012-6016 (1995). 21. Elmore, L.W., Hancock, A.R., Chang, S.F., Wang, X.W., Chang, S., Callahan, C.P., Geller, D.A., Will, H. & Harris, C.C. Hepatitis B virus X protein and p53 tumor suppressor interactions in the modulation of apoptosis. Proceedings of the National Academy of Sciences of the United States of America 94, 14707-14712 (1997). 22. Terradillos, O., Pollicino, T., Lecoeur, H., Tripodi, M., Gougeon, M.L., Tiollais, P. & Buendia, M.A. p53-independent apoptotic effects of the hepatitis B virus HBx protein in vivo and in vitro. Oncogene 17, 2115-2123 (1998). 23. Tarn, C., Lee, S., Hu, Y., Ashendel, C. & Andrisani, O.M. Hepatitis B virus X protein differentially activates RAS-RAF-MAPK and JNK pathways in X-transforming versus non-transforming AML12 hepatocytes. The Journal of Biological Chemistry 276, 34671-34680 (2001). 24. Wen, Y., Golubkov, V.S., Strongin, A.Y., Jiang, W. & Reed, J.C. Interaction of hepatitis B viral oncoprotein with cellular target HBXIP dysregulates centrosome dynamics and mitotic spindle formation. The Journal of Biological Chemistry 283, 2793-2803 (2008). 25. Henkler, F., Waseem, N., Golding, M.H., Alison, M.R. & Koshy, R. Mutant p53 but not hepatitis B virus X protein is present in hepatitis B virus-related human hepatocellular carcinoma. Cancer Research 55, 6084-6091 (1995). 26. Hadziyannis, S., Gerber, M.A., Vissoulis, C. & Popper, H. Cytoplasmic hepatitis B antigen in "ground-glass" hepatocytes of carriers. Archives of Pathology 96, 327-330 (1973). 27. Pópper, H. The ground glass hepatocyte as a diagnostic hint. Human Pathology 6, 517-520 (1975). 28. Su, I.J., Wang, H.C., Wu, H.C. & Huang, W.Y. Ground glass hepatocytes contain pre‐S mutants and represent preneoplastic lesions in chronic hepatitis B virus infection. Journal of Gastroenterology and Hepatology 23, 1169-1174 (2008). 29. Hsieh, Y.H., Su, I.J., Wang, H.C., Chang, W.W., Lei, H.Y., Lai, M.D., Chang, W.T. & Huang, W. Pre-S mutant surface antigens in chronic hepatitis B virus infection induce oxidative stress and DNA damage. Carcinogenesis 25, 2023-2032 (2004). 30. Wang, H.C., Chang, W.T., Chang, W.W., Wu, H.C., Huang, W., Lei, H.Y., Lai, M.D., Fausto, N. & Su, I.J. Hepatitis B virus pre‐S2 mutant upregulates cyclin A expression and induces nodular proliferation of hepatocytes. Hepatology 41, 761-770 (2005). 31. Wang, L.H., Huang, W., Lai, M.D. & Su, I.J. Aberrant cyclin A expression and centrosome overduplication induced by hepatitis B virus pre-S2 mutants and its implication in hepatocarcinogenesis. Carcinogenesis 33, 466-472 (2012). 32. Hsieh, Y.-H., Su, I.-J., Wang, H.-C., Tsai, J.-H., Huang, Y.-J., Chang, W.-W., Lai, M.-D., Lei, H.-Y. & Huang, W. Hepatitis B virus pre-S2 mutant surface antigen induces degradation of cyclin-dependent kinase inhibitor p27Kip1 through c-Jun activation domain-binding protein 1. Molecular Cancer Research 5, 1063-1072 (2007). 33. Hung, J.H., Teng, Y.N., Wang, L.H., Su, I.J., Wang, C.C., Huang, W., Lee, K.H., Lu, K.Y. & Wang, L.H. Induction of Bcl-2 expression by hepatitis B virus pre-S2 mutant large surface protein resistance to 5-fluorouracil treatment in Huh-7 cells. PloS One 6, e28977 (2011). 34. Wu, H.C., Tsai, H.W., Teng, C.F., Hsieh, W.C., Lin, Y.J., Wang, L.H., Yuan, Q. & Su, I.J. Ground-glass hepatocytes co-expressing hepatitis B virus X protein and surface antigens exhibit enhanced oncogenic effects and tumorigenesis. Human Pathology 45, 1294-1301 (2014). 35. Riley, T., Sontag, E., Chen, P. & Levine, A. Transcriptional control of human p53-regulated genes. Nature Reviews. Molecular Cell Biology 9, 402-412 (2008). 36. Fridman, J.S. & Lowe, S.W. Control of apoptosis by p53. Oncogene 22, 9030-9040 (2003). 37. Liu, Q., Guntuku, S., Cui, X.-S., Matsuoka, S., Cortez, D., Tamai, K., Luo, G., Carattini-Rivera, S., DeMayo, F. & Bradley, A. Chk1 is an essential kinase that is regulated by Atr and required for the G2/M DNA damage checkpoint. Genes & Development 14, 1448-1459 (2000). 38. Zou, L. & Elledge, S.J. Sensing DNA damage through ATRIP recognition of RPA-ssDNA complexes. Science 300, 1542-1548 (2003). 39. Hirao, A., Kong, Y.Y., Matsuoka, S., Wakeham, A., Ruland, J., Yoshida, H., Liu, D., Elledge, S.J. & Mak, T.W. DNA damage-induced activation of p53 by the checkpoint kinase Chk2. Science 287, 1824-1827 (2000). 40. Burma, S., Chen, B.P., Murphy, M., Kurimasa, A. & Chen, D.J. ATM phosphorylates histone H2AX in response to DNA double-strand breaks. The Journal of Biological Chemistry 276, 42462-42467 (2001). 41. Falck, J., Mailand, N., Syljuasen, R.G., Bartek, J. & Lukas, J. The ATM-Chk2-Cdc25A checkpoint pathway guards against radioresistant DNA synthesis. Nature 410, 842-847 (2001). 42. Sengupta, S. & Harris, C.C. p53: Traffic cop at the crossroads of DNA repair and recombination. Nature Reviews. Molecular Cell Biology 6, 44-55 (2005). 43. Harris, S.L. & Levine, A.J. The p53 pathway: positive and negative feedback loops. Oncogene 24, 2899-2908 (2005). 44. Zhan, Q., Antinore, M.J., Wang, X.W., Carrier, F., Smith, M.L., Harris, C.C. & Fornace, A.J., Jr. Association with Cdc2 and inhibition of Cdc2/Cyclin B1 kinase activity by the p53-regulated protein Gadd45. Oncogene 18, 2892-2900 (1999). 45. Oliner, J.D., Kinzler, K.W., Meltzer, P.S., George, D.L. & Vogelstein, B. Amplification of a gene encoding a p53-associated protein in human sarcomas. Nature 358, 80-83 (1992). 46. Haupt, Y., Maya, R., Kazaz, A. & Oren, M. Mdm2 promotes the rapid degradation of p53. Nature 387, 296-299 (1997). 47. Khosravi, R., Maya, R., Gottlieb, T., Oren, M., Shiloh, Y. & Shkedy, D. Rapid ATM-dependent phosphorylation of MDM2 precedes p53 accumulation in response to DNA damage. Proceedings of the National Academy of Sciences of the United States of America 96, 14973-14977 (1999). 48. Meek, D.W. & Knippschild, U. Posttranslational modification of MDM2. Molecular Cancer Research 1, 1017-1026 (2003). 49. Dai, C. & Gu, W. p53 post-translational modification: deregulated in tumorigenesis. Trends in Molecular Medicine 16, 528-536 (2010). 50. Sakaguchi, K., Herrera, J.E., Saito, S.i., Miki, T., Bustin, M., Vassilev, A., Anderson, C.W. & Appella, E. DNA damage activates p53 through a phosphorylation–acetylation cascade. Genes & Development 12, 2831-2841 (1998). 51. Ito, A., Lai, C.H., Zhao, X., Saito, S., Hamilton, M.H., Appella, E. & Yao, T.P. p300/CBP-mediated p53 acetylation is commonly induced by p53-activating agents and inhibited by MDM2. The EMBO Journal 20, 1331-1340 (2001). 52. Tang, Y., Zhao, W., Chen, Y., Zhao, Y. & Gu, W. Acetylation is indispensable for p53 activation. Cell 133, 612-626 (2008). 53. Hollstein, M., Sidransky, D., Vogelstein, B. & Harris, C.C. p53 mutations in human cancers. Science 253, 49-53 (1991). 54. Strano, S., Dell'Orso, S., Di Agostino, S., Fontemaggi, G., Sacchi, A. & Blandino, G. Mutant p53: an oncogenic transcription factor. Oncogene 26, 2212-2219 (2007). 55. Freed-Pastor, W.A. & Prives, C. Mutant p53: one name, many proteins. Genes & Development 26, 1268-1286 (2012). 56. Rajagopalan, H. & Lengauer, C. Aneuploidy and cancer. Nature 432, 338-341 (2004). 57. Aylon, Y. & Oren, M. p53: guardian of ploidy. Molecular Oncology 5, 315-323 (2011). 58. Lanni, J.S. & Jacks, T. Characterization of the p53-dependent postmitotic checkpoint following spindle disruption. Molecular and Cellular Biology 18, 1055-1064 (1998). 59. Andreassen, P.R., Lohez, O.D., Lacroix, F.B. & Margolis, R.L. Tetraploid state induces p53-dependent arrest of nontransformed mammalian cells in G1. Molecular Biology of the Cell 12, 1315-1328 (2001). 60. Storchova, Z. & Pellman, D. From polyploidy to aneuploidy, genome instability and cancer. Nature Reviews. Molecular Cell Biology 5, 45-54 (2004). 61. Blander, G. & Guarente, L. The Sir2 family of protein deacetylases. Annual Review of Biochemistry 73, 417-435 (2004). 62. Haigis, M.C. & Sinclair, D.A. Mammalian sirtuins: biological insights and disease relevance. Annual Review of Pathology 5, 253-295 (2010). 63. Wang, F., Nguyen, M., Qin, F.X. & Tong, Q. SIRT2 deacetylates FOXO3a in response to oxidative stress and caloric restriction. Aging Cell 6, 505-514 (2007). 64. Li, X. & Kazgan, N. Mammalian sirtuins and energy metabolism. International Journal of Biological Science 7, 575-587 (2011). 65. Bosch-Presegue, L. & Vaquero, A. The dual role of sirtuins in cancer. Genes Cancer 2, 648-662 (2011). 66. Roth, M. & Chen, W.Y. Sorting out functions of sirtuins in cancer. Oncogene 33, 1609-1620 (2014). 67. Fan, W. & Luo, J. SIRT1 regulates UV-induced DNA repair through deacetylating XPA. Molecular Cell 39, 247-258 (2010). 68. Cohen, H.Y., Miller, C., Bitterman, K.J., Wall, N.R., Hekking, B., Kessler, B., Howitz, K.T., Gorospe, M., de Cabo, R. & Sinclair, D.A. Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase. Science 305, 390-392 (2004). 69. McCord, R.A., Michishita, E., Hong, T., Berber, E., Boxer, L.D., Kusumoto, R., Guan, S.H., Shi, X.B., Gozani, O., Burlingame, A.L., Bohr, V.A. & Chua, K.F. SIRT6 stabilizes DNA-dependent protein kinase at chromatin for DNA double-strand break repair. Aging (Albany NY) 1, 109-121 (2009). 70. Bell, E.L., Emerling, B.M., Ricoult, S.J. & Guarente, L. SirT3 suppresses hypoxia inducible factor 1alpha and tumor growth by inhibiting mitochondrial ROS production. Oncogene 30, 2986-2996 (2011). 71. Herranz, D., Maraver, A., Canamero, M., Gomez-Lopez, G., Inglada-Perez, L., Robledo, M., Castelblanco, E., Matias-Guiu, X. & Serrano, M. SIRT1 promotes thyroid carcinogenesis driven by PTEN deficiency. Oncogene 32, 4052-4056 (2013). 72. Motta, M.C., Divecha, N., Lemieux, M., Kamel, C., Chen, D., Gu, W., Bultsma, Y., McBurney, M. & Guarente, L. Mammalian SIRT1 represses forkhead transcription factors. Cell 116, 551-563 (2004). 73. Xie, M., Liu, M. & He, C.S. SIRT1 regulates endothelial Notch signaling in lung cancer. PloS One 7, e45331 (2012). 74. Byles, V., Zhu, L., Lovaas, J.D., Chmilewski, L.K., Wang, J., Faller, D.V. & Dai, Y. SIRT1 induces EMT by cooperating with EMT transcription factors and enhances prostate cancer cell migration and metastasis. Oncogene 31, 4619-4629 (2012). 75. Vaziri, H., Dessain, S.K., Eagon, E.N., Imai, S.I., Frye, R.A., Pandita, T.K., Guarente, L. & Weinberg, R.A. hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase. Cell 107, 149-159 (2001). 76. Luo, J., Nikolaev, A.Y., Imai, S., Chen, D., Su, F., Shiloh, A., Guarente, L. & Gu, W. Negative control of p53 by Sir2alpha promotes cell survival under stress. Cell 107, 137-148 (2001). 77. Li, S.D., Banck, M., Mujtaba, S., Zhou, M.M., Sugrue, M.M. & Walsh, M.J. p53-Induced Growth Arrest Is Regulated by the Mitochondrial SirT3 Deacetylase. PloS One 5, e10486 (2010). 78. Brown, C.J., Lain, S., Verma, C.S., Fersht, A.R. & Lane, D.P. Awakening guardian angels: drugging the p53 pathway. Nature reviews. Cancer 9, 862-873 (2009). 79. Moll, U.M. & Petrenko, O. The MDM2-p53 interaction. Molecular Cancer Research 1, 1001-1008 (2003). 80. Vassilev, L.T., Vu, B.T., Graves, B., Carvajal, D., Podlaski, F., Filipovic, Z., Kong, N., Kammlott, U., Lukacs, C., Klein, C., Fotouhi, N. & Liu, E.A. In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 303, 844-848 (2004). 81. Kuffer, C., Kuznetsova, A.Y. & Storchova, Z. Abnormal mitosis triggers p53-dependent cell cycle arrest in human tetraploid cells. Chromosoma 122, 305-318 (2013). 82. Thompson, S.L. & Compton, D.A. Proliferation of aneuploid human cells is limited by a p53-dependent mechanism. Journal of Cell Biology 188, 369-381 (2010). 83. Mayo, L.D. & Donner, D.B. A phosphatidylinositol 3-kinase/Akt pathway promotes translocation of Mdm2 from the cytoplasm to the nucleus. Proceedings of the National Academy of Sciences of the United States of America 98, 11598-11603 (2001). 84. Ogawara, Y., Kishishita, S., Obata, T., Isazawa, Y., Suzuki, T., Tanaka, K., Masuyama, N. & Gotoh, Y. Akt enhances Mdm2-mediated ubiquitination and degradation of p53. The Journal of Biological Chemistry 277, 21843-21850 (2002). 85. Yang, J.C., Teng, C.F., Wu, H.C., Tsai, H.W., Chuang, H.C., Tsai, T.F., Hsu, Y.H., Huang, W., Wu, L.W. & Su, I.J. Enhanced expression of vascular endothelial growth factor-A in ground glass hepatocytes and its implication in hepatitis B virus hepatocarcinogenesis. Hepatology 49, 1962-1971 (2009). 86. Liu, H., Xu, J., Zhou, L., Yun, X., Chen, L., Wang, S., Sun, L., Wen, Y. & Gu, J. Hepatitis B virus large surface antigen promotes liver carcinogenesis by activating the Src/PI3K/Akt pathway. Cancer Research 71, 7547-7557 (2011). 87. Bosch-Presegue, L. & Vaquero, A. Sirtuins in stress response: guardians of the genome. Oncogene 33, 3764-3775 (2014). 88. Sasaki, T., Maier, B., Koclega, K.D., Chruszcz, M., Gluba, W., Stukenberg, P.T., Minor, W. & Scrable, H. Phosphorylation regulates SIRT1 function. PloS One 3, e4020 (2008). 89. Flick, F. & Luscher, B. Regulation of sirtuin function by posttranslational modifications. Frontiers in Pharmacology 3, 29 (2012). 90. Doong, H., Vrailas, A. & Kohn, E.C. What's in the ‘BAG’?–a functional domain analysis of the BAG-family proteins. Cancer Letters 188, 25-32 (2002). 91. Takayama, S. & Reed, J.C. Molecular chaperone targeting and regulation by BAG family proteins. Nature Cell Biology 3, E237-241 (2001). 92. Thress, K., Henzel, W., Shillinglaw, W. & Kornbluth, S. Scythe: a novel reaper-binding apoptotic regulator. The EMBO Journal 17, 6135-6143 (1998). 93. Arndt, V., Daniel, C., Nastainczyk, W., Alberti, S. & Hohfeld, J. BAG-2 acts as an inhibitor of the chaperone-associated ubiquitin ligase CHIP. Molecular Biology of the Cell 16, 5891-5900 (2005). 94. Dai, Q., Qian, S.B., Li, H.H., McDonough, H., Borchers, C., Huang, D., Takayama, S., Younger, J.M., Ren, H.Y., Cyr, D.M. & Patterson, C. Regulation of the cytoplasmic quality control protein degradation pathway by BAG2. The Journal of Biological Chemistry 280, 38673-38681 (2005). 95. Zhang, J., Lou, X., Yang, S., He, S., Yang, L., Liu, M., Zhu, H., Shan, Q., Su, S., Zhan, Q., Xu, N. & Liu, S. BAG2 is a target of the c-Myc gene and is involved in cellular senescence via the p21(CIP1) pathway. Cancer Letters 318, 34-41 (2012). 96. Olivier, M., Hollstein, M. & Hainaut, P. TP53 mutations in human cancers: origins, consequences, and clinical use. Cold Spring Harbor Perspectives in Biology 2, a001008 (2010).
|