帳號:guest(18.190.153.213)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳韋岑
作者(外文):Chen, Wei-Chen
論文名稱(中文):B 型肝炎大表面蛋白調控腫瘤抑制蛋白p53 之作用機制
論文名稱(外文):Underlying Mechanism of Hepatitis B Virus Large Surface Antigen-mediated Down-regulation on Tumor Suppressor Protein p53
指導教授(中文):王慧菁
指導教授(外文):Wang, Hui-Ching
口試委員(中文):李岳倫
周裕珽
口試委員(外文):Lee, Yueh-Luen
Chou, Yu-Ting
學位類別:碩士
校院名稱:國立清華大學
系所名稱:分子與細胞生物研究所
學號:102080543
出版年(民國):104
畢業學年度:103
語文別:英文中文
論文頁數:57
中文關鍵詞:肝細胞癌B型肝炎病毒腫瘤抑制蛋白p53
外文關鍵詞:HCCHepatitis B virusp53
相關次數:
  • 推薦推薦:0
  • 點閱點閱:95
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
肝癌為全世界致死率第二高之癌症。約70-80%之肝癌屬於肝細胞癌 (Hepatocellular carcinoma, HCC) 並且其中近六成與慢性B型肝炎病毒感染有關,而B型肝炎病毒之大表面蛋白 (HBV large surface antigen, LHBs) 則被視為促使肝細胞癌發生之致癌蛋白。在本研究中,我們發現LHBs的對於腫瘤抑制蛋白p53的表現有負調控之作用。此負調控肇因於降低腫瘤抑制蛋白p53之穩定性並同時促進其負調控因子Mdm2之表現。我們也發現在帶有LHBs之肝細胞中,p53的負調控現象會伴隨著較高DNA損傷以及減低細胞對與DNA損傷之反應,且在此細胞中進一步誘導DNA損傷並無法活化腫瘤抑制因子p53以及其下游分子p21。而LHBs的表現也造成了細胞出現多核 (multinucleation) 之情形,顯示負調控p53使LHBs細胞無法維持其正確之染色體倍數。利用Nutlin-3干擾p53-Mdm2之間交互作用可恢復細胞中p53表現量但不具活性,反之抑制細胞中Sirtuins之去乙醯化活性可回復p53表現量及其生物功能。為了釐清LHBs如何調控p53蛋白之穩定性,我們鑑定出一屬於BAG蛋白質家族之伴護子調節蛋白,Bag2,能與LHBs結合而影響其原本做為p53伴護子之功能。實驗結果顯示在LHBs細胞中大量表現Bag2可恢復部分p53的表現。總結上述結果,LHBs利用兩種不同機制來弱化腫瘤抑制因子p53之功能,分別為藉由與Bag2結合來影響其保護p53之功能以及將p53去乙醯化使p53失去生物活性。這些發現對於LHBs如何誘發肝癌的致病機轉提供了新的機轉。
Liver cancer is the second frequent cause of cancer death worldwide. About 70-80% of liver cancer belongs to hepatocellular carcinoma (HCC) and nearly 60% of HCC are associated chronic hepatitis B virus (HBV) infection. HBV large surface antigen (LHBs) has been considered as a potential oncoprotein in hepatocarcinogenesis. In this study, we found that the presence of LHBs down-regulates tumor suppressor p53 in hepatocytes. This down-regulation is associated with decreased stability of p53 and increased Mdm2 expression. We also found that p53 down-regulation accompanies with intrinsic DNA damages and reduced of DNA damage response in hepatocytes. Chemical induced DNA damages fails to activate p53 and its downstream p21 in LHBs-expressing cells. Moreover, we detected a significant increase in multinucleation in LHBs-expressing cells, indicating a loss of ploidy control. The disruption of p53-Mdm2 interaction with Nutlin-3 is not sufficient to restore p53 expression in LHBs-expressing cells, whereas the inhibition of Sirtuin-mediated p53 deacetylation successfully rescues p53 expression and its biological function. To clarify how does LHBs regulates p53 stability, we identified BAG family molecular chaperone regulator 2 (Bag2), a binding partner of LHBs which acts as a chaperon protein of p53. Overexpression of Bag2 partially restored p53 expression level in LHBs-expressing cells. Together these results indicate that LHBs attenuates p53 functionality via two independent mechanisms, compete with p53 for binding to chaperon protein Bag2 and inactivate p53 by deacetylation. These findings therefore highlight the pathologic function of LHBs in HBV-mediated hepatocarcinogenesis.
Abstract 3
中文摘要 4
1. Introduction 5
1.1 HBV-mediated hepatocarcinogenesis 5
1.2 Tumor suppressor p53 7
1.3 p53 loss of function and aneuploidy 8
1.4 Sirtuins and cancer 9
2. Hypothesis and specific aims 11
3. Material and methods 12
3.1 Cell culture 12
3.2 Plasmid construction 12
3.3 RNA extraction and reverse transcriptase-polymerase chain reaction 12
3.4 Western blotting 13
3.5 Immunoprecipitation 13
3.6 Immunofluorescence staining (IF) 14
3.7 Affinity tagged protein pulldown assay 14
3.8 Cell proliferation assay 14
3.9 Recombinant p53-HA stability analysis 14
3.10 Time-lapse live cell imaging 15
3.11 RNA interference 15
3.12 Flow Cytometry Analysis 15
4. Results 16
4.1 The down-regulation of p53 in LHBs-expressing cell was mediated by the post-translational regulation 16
4.2 LHBs protein accelerate p53 degradation through promote Mdm2 expression 16
4.3 LHBs-expressing cell carries intrinsic DNA damages 17
4.4 LHBs promotes proliferation of multinucleated hepatocytes 17
4.5 p53 activity can be rescued in LHBs-expressing cells by inhibiting Sirtuin 18
4.6 BAG family molecular chaperone regulator 2 (Bag2), binds to LHBs protein in LHBs-expressing cell 19
4.7 Bag2 associate with p53 and restore p53 level in LHBs-expressing cell 19
4.8 Sirtuins-mediated p53 deacetylation destabilize p53 through dissociate from Bag2 20
5. Discussion 21
5.1 How is Mdm2 regulated by LHBs? 21
5.2 How is Sirtuins activated by LHBs? 21
5.3 The role of Bag2 in LHBs-expressing cells 22
5.4 The role of LHBs in HCC progression 23
6. Figures 25
Figure 1. Large hepatitis surface antigen (LHBs) attenuates p53 expression in hTERT-immortalized hepatic progenitor cell NeHepLxHT. 25
Figure 1. Continued 26
Figure 2. Protein stability of p53 is down-regulated in LHBs-positive cells. 27
Figure 3. LHBs promotes Mdm2-mediated proteasomal degradation of p53. 28
Figure 3. Continued 29
Figure 4. Cell proliferation of LHBs-expressing cells is independent of p53-Mdm2 interaction. 30
Figure 5. LHBs-expressing cell responses poorly to Etoposide. 31
Figure 5. Continued 32
Figure 6. LHBs promotes multinucleation in hepatocytes. 33
Figure 6. Continued 34
Figure 7. The LHBs expressing cells have a higher mitotic index. 35
Figure 8. Ectopic expressing p53 increases p21 expression in LHBs expressing cells. 36
Figure 9. Inhibition of Sirtuins increases the expressions of p53 and p21. 37
Figure 9. Continued 38
Figure 10. LHBs interacts with BAG family molecular chaperone regulator 2 (Bag2) in hepatocyte. 39
Figure 11. Overexpression Bag2 and knockdown LHBs rescued p53 in LHBs-expressing cells. 40
Figure 12. Inhibition of Sirtuin by Tenovin-6 increases the interaction between Bag2 and p53 in LHBs-expressing cells. 41
Figure 13. Knockdown LHBs and treatment of Tenovin-6 restored the protective effect of Bag2 on p53. 42
Figure 14. Cell proliferation in LHBs cells were inhibited upon Tenovin-6 treatment. 43
Figure 15. The consequence of LHBs expression in DNA damage response. 44
7. Reference 45
8. Tables 51
9. Appendices 54
1. Jemal, A., Bray, F., Center, M.M., Ferlay, J., Ward, E. & Forman, D. Global cancer statistics. CA: a Cancer Journal for Clinicians 61, 69-90 (2011).
2. El-Serag, H.B. Epidemiology of viral hepatitis and hepatocellular carcinoma. Gastroenterology 142, 1264-1273 e1261 (2012).
3. Seeger, C. & Mason, W.S. Hepatitis B virus biology. Microbiology and Molecular Biology Reviews 64, 51-68 (2000).
4. Chang, J.J. & Lewin, S.R. Immunopathogenesis of hepatitis B virus infection. Immunology and Cell Biology 85, 16-23 (2007).
5. Farazi, P.A. & DePinho, R.A. Hepatocellular carcinoma pathogenesis: from genes to environment. Nature Reviews. Cancer 6, 674-687 (2006).
6. Block, T.M., Mehta, A.S., Fimmel, C.J. & Jordan, R. Molecular viral oncology of hepatocellular carcinoma. Oncogene 22, 5093-5107 (2003).
7. Rudolph, K.L., Chang, S., Millard, M., Schreiber-Agus, N. & DePinho, R.A. Inhibition of experimental liver cirrhosis in mice by telomerase gene delivery. Science 287, 1253-1258 (2000).
8. Hartmann, D., Srivastava, U., Thaler, M., Kleinhans, K.N., N'Kontchou, G., Scheffold, A., Bauer, K., Kratzer, R.F., Kloos, N., Katz, S.F., Song, Z., Begus-Nahrmann, Y., Kleger, A., von Figura, G., Strnad, P., Lechel, A., Gunes, C., Potthoff, A., Deterding, K., Wedemeyer, H., Ju, Z., Song, G., Xiao, F., Gillen, S., Schrezenmeier, H., Mertens, T., Ziol, M., Friess, H., Jarek, M., Manns, M.P., Beaugrand, M. & Rudolph, K.L. Telomerase gene mutations are associated with cirrhosis formation. Hepatology 53, 1608-1617 (2011).
9. Wang, Y., Lau, S.H., Sham, J.S., Wu, M.C., Wang, T. & Guan, X.Y. Characterization of HBV integrants in 14 hepatocellular carcinomas: association of truncated X gene and hepatocellular carcinogenesis. Oncogene 23, 142-148 (2004).
10. Kremsdorf, D., Soussan, P., Paterlini-Brechot, P. & Brechot, C. Hepatitis B virus-related hepatocellular carcinoma: paradigms for viral-related human carcinogenesis. Oncogene 25, 3823-3833 (2006).
11. Murakami, Y., Saigo, K., Takashima, H., Minami, M., Okanoue, T., Brechot, C. & Paterlini-Brechot, P. Large scaled analysis of hepatitis B virus (HBV) DNA integration in HBV related hepatocellular carcinomas. Gut 54, 1162-1168 (2005).
12. Paterlini-Brechot, P., Saigo, K., Murakami, Y., Chami, M., Gozuacik, D., Mugnier, C., Lagorce, D. & Brechot, C. Hepatitis B virus-related insertional mutagenesis occurs frequently in human liver cancers and recurrently targets human telomerase gene. Oncogene 22, 3911-3916 (2003).
13. Hohne, M., Schaefer, S., Seifer, M., Feitelson, M.A., Paul, D. & Gerlich, W.H. Malignant transformation of immortalized transgenic hepatocytes after transfection with hepatitis B virus DNA. The EMBO Journal 9, 1137-1145 (1990).
14. Seifer, M., Hohne, M., Schaefer, S. & Gerlich, W.H. In vitro tumorigenicity of hepatitis B virus DNA and HBx protein. Journal of Hepatology 13 Suppl 4, S61-65 (1991).
15. Wang, X.W., Forrester, K., Yeh, H., Feitelson, M.A., Gu, J.R. & Harris, C.C. Hepatitis B virus X protein inhibits p53 sequence-specific DNA binding, transcriptional activity, and association with transcription factor ERCC3. Proceedings of the National Academy of Sciences of the United States of America 91, 2230-2234 (1994).
16. Truant, R., Antunovic, J., Greenblatt, J., Prives, C. & Cromlish, J.A. Direct interaction of the hepatitis B virus HBx protein with p53 leads to inhibition by HBx of p53 response element-directed transactivation. Journal of Virology 69, 1851-1859 (1995).
17. Becker, S.A., Lee, T.H., Butel, J.S. & Slagle, B.L. Hepatitis B virus X protein interferes with cellular DNA repair. Journal of Virology 72, 266-272 (1998).
18. Groisman, I.J., Koshy, R., Henkler, F., Groopman, J.D. & Alaoui-Jamali, M.A. Downregulation of DNA excision repair by the hepatitis B virus-x protein occurs in p53-proficient and p53-deficient cells. Carcinogenesis 20, 479-483 (1999).
19. Lee, A.T., Ren, J., Wong, E.T., Ban, K.H., Lee, L.A. & Lee, C.G. The hepatitis B virus X protein sensitizes HepG2 cells to UV light-induced DNA damage. The Journal of Biological Chemistry 280, 33525-33535 (2005).
20. Wang, X.W., Gibson, M.K., Vermeulen, W., Yeh, H., Forrester, K., Sturzbecher, H.W., Hoeijmakers, J.H. & Harris, C.C. Abrogation of p53-induced apoptosis by the hepatitis B virus X gene. Cancer Research 55, 6012-6016 (1995).
21. Elmore, L.W., Hancock, A.R., Chang, S.F., Wang, X.W., Chang, S., Callahan, C.P., Geller, D.A., Will, H. & Harris, C.C. Hepatitis B virus X protein and p53 tumor suppressor interactions in the modulation of apoptosis. Proceedings of the National Academy of Sciences of the United States of America 94, 14707-14712 (1997).
22. Terradillos, O., Pollicino, T., Lecoeur, H., Tripodi, M., Gougeon, M.L., Tiollais, P. & Buendia, M.A. p53-independent apoptotic effects of the hepatitis B virus HBx protein in vivo and in vitro. Oncogene 17, 2115-2123 (1998).
23. Tarn, C., Lee, S., Hu, Y., Ashendel, C. & Andrisani, O.M. Hepatitis B virus X protein differentially activates RAS-RAF-MAPK and JNK pathways in X-transforming versus non-transforming AML12 hepatocytes. The Journal of Biological Chemistry 276, 34671-34680 (2001).
24. Wen, Y., Golubkov, V.S., Strongin, A.Y., Jiang, W. & Reed, J.C. Interaction of hepatitis B viral oncoprotein with cellular target HBXIP dysregulates centrosome dynamics and mitotic spindle formation. The Journal of Biological Chemistry 283, 2793-2803 (2008).
25. Henkler, F., Waseem, N., Golding, M.H., Alison, M.R. & Koshy, R. Mutant p53 but not hepatitis B virus X protein is present in hepatitis B virus-related human hepatocellular carcinoma. Cancer Research 55, 6084-6091 (1995).
26. Hadziyannis, S., Gerber, M.A., Vissoulis, C. & Popper, H. Cytoplasmic hepatitis B antigen in "ground-glass" hepatocytes of carriers. Archives of Pathology 96, 327-330 (1973).
27. Pópper, H. The ground glass hepatocyte as a diagnostic hint. Human Pathology 6, 517-520 (1975).
28. Su, I.J., Wang, H.C., Wu, H.C. & Huang, W.Y. Ground glass hepatocytes contain pre‐S mutants and represent preneoplastic lesions in chronic hepatitis B virus infection. Journal of Gastroenterology and Hepatology 23, 1169-1174 (2008).
29. Hsieh, Y.H., Su, I.J., Wang, H.C., Chang, W.W., Lei, H.Y., Lai, M.D., Chang, W.T. & Huang, W. Pre-S mutant surface antigens in chronic hepatitis B virus infection induce oxidative stress and DNA damage. Carcinogenesis 25, 2023-2032 (2004).
30. Wang, H.C., Chang, W.T., Chang, W.W., Wu, H.C., Huang, W., Lei, H.Y., Lai, M.D., Fausto, N. & Su, I.J. Hepatitis B virus pre‐S2 mutant upregulates cyclin A expression and induces nodular proliferation of hepatocytes. Hepatology 41, 761-770 (2005).
31. Wang, L.H., Huang, W., Lai, M.D. & Su, I.J. Aberrant cyclin A expression and centrosome overduplication induced by hepatitis B virus pre-S2 mutants and its implication in hepatocarcinogenesis. Carcinogenesis 33, 466-472 (2012).
32. Hsieh, Y.-H., Su, I.-J., Wang, H.-C., Tsai, J.-H., Huang, Y.-J., Chang, W.-W., Lai, M.-D., Lei, H.-Y. & Huang, W. Hepatitis B virus pre-S2 mutant surface antigen induces degradation of cyclin-dependent kinase inhibitor p27Kip1 through c-Jun activation domain-binding protein 1. Molecular Cancer Research 5, 1063-1072 (2007).
33. Hung, J.H., Teng, Y.N., Wang, L.H., Su, I.J., Wang, C.C., Huang, W., Lee, K.H., Lu, K.Y. & Wang, L.H. Induction of Bcl-2 expression by hepatitis B virus pre-S2 mutant large surface protein resistance to 5-fluorouracil treatment in Huh-7 cells. PloS One 6, e28977 (2011).
34. Wu, H.C., Tsai, H.W., Teng, C.F., Hsieh, W.C., Lin, Y.J., Wang, L.H., Yuan, Q. & Su, I.J. Ground-glass hepatocytes co-expressing hepatitis B virus X protein and surface antigens exhibit enhanced oncogenic effects and tumorigenesis. Human Pathology 45, 1294-1301 (2014).
35. Riley, T., Sontag, E., Chen, P. & Levine, A. Transcriptional control of human p53-regulated genes. Nature Reviews. Molecular Cell Biology 9, 402-412 (2008).
36. Fridman, J.S. & Lowe, S.W. Control of apoptosis by p53. Oncogene 22, 9030-9040 (2003).
37. Liu, Q., Guntuku, S., Cui, X.-S., Matsuoka, S., Cortez, D., Tamai, K., Luo, G., Carattini-Rivera, S., DeMayo, F. & Bradley, A. Chk1 is an essential kinase that is regulated by Atr and required for the G2/M DNA damage checkpoint. Genes & Development 14, 1448-1459 (2000).
38. Zou, L. & Elledge, S.J. Sensing DNA damage through ATRIP recognition of RPA-ssDNA complexes. Science 300, 1542-1548 (2003).
39. Hirao, A., Kong, Y.Y., Matsuoka, S., Wakeham, A., Ruland, J., Yoshida, H., Liu, D., Elledge, S.J. & Mak, T.W. DNA damage-induced activation of p53 by the checkpoint kinase Chk2. Science 287, 1824-1827 (2000).
40. Burma, S., Chen, B.P., Murphy, M., Kurimasa, A. & Chen, D.J. ATM phosphorylates histone H2AX in response to DNA double-strand breaks. The Journal of Biological Chemistry 276, 42462-42467 (2001).
41. Falck, J., Mailand, N., Syljuasen, R.G., Bartek, J. & Lukas, J. The ATM-Chk2-Cdc25A checkpoint pathway guards against radioresistant DNA synthesis. Nature 410, 842-847 (2001).
42. Sengupta, S. & Harris, C.C. p53: Traffic cop at the crossroads of DNA repair and recombination. Nature Reviews. Molecular Cell Biology 6, 44-55 (2005).
43. Harris, S.L. & Levine, A.J. The p53 pathway: positive and negative feedback loops. Oncogene 24, 2899-2908 (2005).
44. Zhan, Q., Antinore, M.J., Wang, X.W., Carrier, F., Smith, M.L., Harris, C.C. & Fornace, A.J., Jr. Association with Cdc2 and inhibition of Cdc2/Cyclin B1 kinase activity by the p53-regulated protein Gadd45. Oncogene 18, 2892-2900 (1999).
45. Oliner, J.D., Kinzler, K.W., Meltzer, P.S., George, D.L. & Vogelstein, B. Amplification of a gene encoding a p53-associated protein in human sarcomas. Nature 358, 80-83 (1992).
46. Haupt, Y., Maya, R., Kazaz, A. & Oren, M. Mdm2 promotes the rapid degradation of p53. Nature 387, 296-299 (1997).
47. Khosravi, R., Maya, R., Gottlieb, T., Oren, M., Shiloh, Y. & Shkedy, D. Rapid ATM-dependent phosphorylation of MDM2 precedes p53 accumulation in response to DNA damage. Proceedings of the National Academy of Sciences of the United States of America 96, 14973-14977 (1999).
48. Meek, D.W. & Knippschild, U. Posttranslational modification of MDM2. Molecular Cancer Research 1, 1017-1026 (2003).
49. Dai, C. & Gu, W. p53 post-translational modification: deregulated in tumorigenesis. Trends in Molecular Medicine 16, 528-536 (2010).
50. Sakaguchi, K., Herrera, J.E., Saito, S.i., Miki, T., Bustin, M., Vassilev, A., Anderson, C.W. & Appella, E. DNA damage activates p53 through a phosphorylation–acetylation cascade. Genes & Development 12, 2831-2841 (1998).
51. Ito, A., Lai, C.H., Zhao, X., Saito, S., Hamilton, M.H., Appella, E. & Yao, T.P. p300/CBP-mediated p53 acetylation is commonly induced by p53-activating agents and inhibited by MDM2. The EMBO Journal 20, 1331-1340 (2001).
52. Tang, Y., Zhao, W., Chen, Y., Zhao, Y. & Gu, W. Acetylation is indispensable for p53 activation. Cell 133, 612-626 (2008).
53. Hollstein, M., Sidransky, D., Vogelstein, B. & Harris, C.C. p53 mutations in human cancers. Science 253, 49-53 (1991).
54. Strano, S., Dell'Orso, S., Di Agostino, S., Fontemaggi, G., Sacchi, A. & Blandino, G. Mutant p53: an oncogenic transcription factor. Oncogene 26, 2212-2219 (2007).
55. Freed-Pastor, W.A. & Prives, C. Mutant p53: one name, many proteins. Genes & Development 26, 1268-1286 (2012).
56. Rajagopalan, H. & Lengauer, C. Aneuploidy and cancer. Nature 432, 338-341 (2004).
57. Aylon, Y. & Oren, M. p53: guardian of ploidy. Molecular Oncology 5, 315-323 (2011).
58. Lanni, J.S. & Jacks, T. Characterization of the p53-dependent postmitotic checkpoint following spindle disruption. Molecular and Cellular Biology 18, 1055-1064 (1998).
59. Andreassen, P.R., Lohez, O.D., Lacroix, F.B. & Margolis, R.L. Tetraploid state induces p53-dependent arrest of nontransformed mammalian cells in G1. Molecular Biology of the Cell 12, 1315-1328 (2001).
60. Storchova, Z. & Pellman, D. From polyploidy to aneuploidy, genome instability and cancer. Nature Reviews. Molecular Cell Biology 5, 45-54 (2004).
61. Blander, G. & Guarente, L. The Sir2 family of protein deacetylases. Annual Review of Biochemistry 73, 417-435 (2004).
62. Haigis, M.C. & Sinclair, D.A. Mammalian sirtuins: biological insights and disease relevance. Annual Review of Pathology 5, 253-295 (2010).
63. Wang, F., Nguyen, M., Qin, F.X. & Tong, Q. SIRT2 deacetylates FOXO3a in response to oxidative stress and caloric restriction. Aging Cell 6, 505-514 (2007).
64. Li, X. & Kazgan, N. Mammalian sirtuins and energy metabolism. International Journal of Biological Science 7, 575-587 (2011).
65. Bosch-Presegue, L. & Vaquero, A. The dual role of sirtuins in cancer. Genes Cancer 2, 648-662 (2011).
66. Roth, M. & Chen, W.Y. Sorting out functions of sirtuins in cancer. Oncogene 33, 1609-1620 (2014).
67. Fan, W. & Luo, J. SIRT1 regulates UV-induced DNA repair through deacetylating XPA. Molecular Cell 39, 247-258 (2010).
68. Cohen, H.Y., Miller, C., Bitterman, K.J., Wall, N.R., Hekking, B., Kessler, B., Howitz, K.T., Gorospe, M., de Cabo, R. & Sinclair, D.A. Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase. Science 305, 390-392 (2004).
69. McCord, R.A., Michishita, E., Hong, T., Berber, E., Boxer, L.D., Kusumoto, R., Guan, S.H., Shi, X.B., Gozani, O., Burlingame, A.L., Bohr, V.A. & Chua, K.F. SIRT6 stabilizes DNA-dependent protein kinase at chromatin for DNA double-strand break repair. Aging (Albany NY) 1, 109-121 (2009).
70. Bell, E.L., Emerling, B.M., Ricoult, S.J. & Guarente, L. SirT3 suppresses hypoxia inducible factor 1alpha and tumor growth by inhibiting mitochondrial ROS production. Oncogene 30, 2986-2996 (2011).
71. Herranz, D., Maraver, A., Canamero, M., Gomez-Lopez, G., Inglada-Perez, L., Robledo, M., Castelblanco, E., Matias-Guiu, X. & Serrano, M. SIRT1 promotes thyroid carcinogenesis driven by PTEN deficiency. Oncogene 32, 4052-4056 (2013).
72. Motta, M.C., Divecha, N., Lemieux, M., Kamel, C., Chen, D., Gu, W., Bultsma, Y., McBurney, M. & Guarente, L. Mammalian SIRT1 represses forkhead transcription factors. Cell 116, 551-563 (2004).
73. Xie, M., Liu, M. & He, C.S. SIRT1 regulates endothelial Notch signaling in lung cancer. PloS One 7, e45331 (2012).
74. Byles, V., Zhu, L., Lovaas, J.D., Chmilewski, L.K., Wang, J., Faller, D.V. & Dai, Y. SIRT1 induces EMT by cooperating with EMT transcription factors and enhances prostate cancer cell migration and metastasis. Oncogene 31, 4619-4629 (2012).
75. Vaziri, H., Dessain, S.K., Eagon, E.N., Imai, S.I., Frye, R.A., Pandita, T.K., Guarente, L. & Weinberg, R.A. hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase. Cell 107, 149-159 (2001).
76. Luo, J., Nikolaev, A.Y., Imai, S., Chen, D., Su, F., Shiloh, A., Guarente, L. & Gu, W. Negative control of p53 by Sir2alpha promotes cell survival under stress. Cell 107, 137-148 (2001).
77. Li, S.D., Banck, M., Mujtaba, S., Zhou, M.M., Sugrue, M.M. & Walsh, M.J. p53-Induced Growth Arrest Is Regulated by the Mitochondrial SirT3 Deacetylase. PloS One 5, e10486 (2010).
78. Brown, C.J., Lain, S., Verma, C.S., Fersht, A.R. & Lane, D.P. Awakening guardian angels: drugging the p53 pathway. Nature reviews. Cancer 9, 862-873 (2009).
79. Moll, U.M. & Petrenko, O. The MDM2-p53 interaction. Molecular Cancer Research 1, 1001-1008 (2003).
80. Vassilev, L.T., Vu, B.T., Graves, B., Carvajal, D., Podlaski, F., Filipovic, Z., Kong, N., Kammlott, U., Lukacs, C., Klein, C., Fotouhi, N. & Liu, E.A. In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 303, 844-848 (2004).
81. Kuffer, C., Kuznetsova, A.Y. & Storchova, Z. Abnormal mitosis triggers p53-dependent cell cycle arrest in human tetraploid cells. Chromosoma 122, 305-318 (2013).
82. Thompson, S.L. & Compton, D.A. Proliferation of aneuploid human cells is limited by a p53-dependent mechanism. Journal of Cell Biology 188, 369-381 (2010).
83. Mayo, L.D. & Donner, D.B. A phosphatidylinositol 3-kinase/Akt pathway promotes translocation of Mdm2 from the cytoplasm to the nucleus. Proceedings of the National Academy of Sciences of the United States of America 98, 11598-11603 (2001).
84. Ogawara, Y., Kishishita, S., Obata, T., Isazawa, Y., Suzuki, T., Tanaka, K., Masuyama, N. & Gotoh, Y. Akt enhances Mdm2-mediated ubiquitination and degradation of p53. The Journal of Biological Chemistry 277, 21843-21850 (2002).
85. Yang, J.C., Teng, C.F., Wu, H.C., Tsai, H.W., Chuang, H.C., Tsai, T.F., Hsu, Y.H., Huang, W., Wu, L.W. & Su, I.J. Enhanced expression of vascular endothelial growth factor-A in ground glass hepatocytes and its implication in hepatitis B virus hepatocarcinogenesis. Hepatology 49, 1962-1971 (2009).
86. Liu, H., Xu, J., Zhou, L., Yun, X., Chen, L., Wang, S., Sun, L., Wen, Y. & Gu, J. Hepatitis B virus large surface antigen promotes liver carcinogenesis by activating the Src/PI3K/Akt pathway. Cancer Research 71, 7547-7557 (2011).
87. Bosch-Presegue, L. & Vaquero, A. Sirtuins in stress response: guardians of the genome. Oncogene 33, 3764-3775 (2014).
88. Sasaki, T., Maier, B., Koclega, K.D., Chruszcz, M., Gluba, W., Stukenberg, P.T., Minor, W. & Scrable, H. Phosphorylation regulates SIRT1 function. PloS One 3, e4020 (2008).
89. Flick, F. & Luscher, B. Regulation of sirtuin function by posttranslational modifications. Frontiers in Pharmacology 3, 29 (2012).
90. Doong, H., Vrailas, A. & Kohn, E.C. What's in the ‘BAG’?–a functional domain analysis of the BAG-family proteins. Cancer Letters 188, 25-32 (2002).
91. Takayama, S. & Reed, J.C. Molecular chaperone targeting and regulation by BAG family proteins. Nature Cell Biology 3, E237-241 (2001).
92. Thress, K., Henzel, W., Shillinglaw, W. & Kornbluth, S. Scythe: a novel reaper-binding apoptotic regulator. The EMBO Journal 17, 6135-6143 (1998).
93. Arndt, V., Daniel, C., Nastainczyk, W., Alberti, S. & Hohfeld, J. BAG-2 acts as an inhibitor of the chaperone-associated ubiquitin ligase CHIP. Molecular Biology of the Cell 16, 5891-5900 (2005).
94. Dai, Q., Qian, S.B., Li, H.H., McDonough, H., Borchers, C., Huang, D., Takayama, S., Younger, J.M., Ren, H.Y., Cyr, D.M. & Patterson, C. Regulation of the cytoplasmic quality control protein degradation pathway by BAG2. The Journal of Biological Chemistry 280, 38673-38681 (2005).
95. Zhang, J., Lou, X., Yang, S., He, S., Yang, L., Liu, M., Zhu, H., Shan, Q., Su, S., Zhan, Q., Xu, N. & Liu, S. BAG2 is a target of the c-Myc gene and is involved in cellular senescence via the p21(CIP1) pathway. Cancer Letters 318, 34-41 (2012).
96. Olivier, M., Hollstein, M. & Hainaut, P. TP53 mutations in human cancers: origins, consequences, and clinical use. Cold Spring Harbor Perspectives in Biology 2, a001008 (2010).
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *