帳號:guest(3.145.69.33)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林瑟玉
作者(外文):Lin, Se Yu
論文名稱(中文):探討脂肪幹細胞類球體膠原蛋白敷料促進傷口癒合的效果
論文名稱(外文):Investigation of the effects of a wound healing promoting matrix containing adipose-derived stem cell spheroids embedded in collagen
指導教授(中文):張晃猷
指導教授(外文):Chang, Hwan You
口試委員(中文):高茂傑
張壯榮
口試委員(外文):Kao, Mou Chieh
Chang, Chuang Rung
學位類別:碩士
校院名稱:國立清華大學
系所名稱:分子醫學研究所
學號:102080542
出版年(民國):104
畢業學年度:103
語文別:中文
論文頁數:54
中文關鍵詞:傷口癒合脂肪幹細胞多細胞球體
外文關鍵詞:Wound healingAdipose-derived stem cellSpheroids
相關次數:
  • 推薦推薦:0
  • 點閱點閱:548
  • 評分評分:*****
  • 下載下載:12
  • 收藏收藏:0
皮膚是對抗外來病原的第一道防線,若損傷則非常容易受到感染,因此促進傷口癒合的研究受到高度重視,也有多種促進傷口癒合材料在市場販售。利用組織工程及細胞治療已被用於促進傷口癒合,並且顯示較傳統敷料更佳的效果。本研究建立含有脂肪幹細胞類球體的膠原蛋白凝膠敷料,並測試是否能幫助傷口更快速的癒合。首先觀察脂肪幹細胞與小腸上皮細胞株C2BBe1共培養的結果,發現脂肪幹細胞能形成似微血管的管狀網絡結構。而後我們利用C2BBe1細胞層刮除一道無細胞區域,並使用不同處理模擬傷口癒合,結果顯示加入培養過脂肪幹細胞的條件培液能促使傷口癒合。接著以懸滴培養法製作脂肪細胞類球體,發現經三維培養細胞生長速率提升,並且其條件培養液能降低巨噬細胞發炎因子IL-1β的分泌。後續透過裸鼠皮膚層切除之傷口癒合模式,製造直徑為8 mm的圓形傷口,再以吻合傷口大小的含脂肪幹細胞類球體的膠原蛋白凝膠敷料覆蓋於傷口處,並與其他組比對,發現處理組的傷口具有較佳的皮膚癒合速率。組織切片結果顯示發炎性細胞的浸潤降低,傷口癒合過程中發炎時期也縮短。綜合本研究結果,此脂肪幹細胞類球體的膠原蛋白凝膠敷料對於皮膚傷口是有助益的。製備該敷料簡易,使用也便利,是促進傷口癒合的另一替代方案。
Skin is the first line of barrier to protect the body from pathogens. Patients suffering from burns, diabetes wounds and chronic skin wounds are susceptible to infections. Tissue engineering- based cell therapies have been used to promote wound healing and demonstrated to be more effective than conventional wound dressing. In this study, we examined whether adipose-derived stem cell (ADSC) spheroids, a simple three-dimensional (3D) substitute, can accelerate wound healing. First, we found ADSC co-cultured with the human intestinal epithelial C2BBe1 cells formed tube-like structure. We then investigated whether ADSC could promote cell migration using the scratch wound healing assay on monolayers of C2BBe1 cells. The result showed that wound healing was significantly enhanced after treatment with conditioned medium from ADSC. In addition, we found that ADSC-spheroids formation by hanging drop had higher cells growth rate, and ADSC conditioned medium reduced IL-1β level during inflammation. This study was followed by using the cutaneous excisional nude mice model. We covered the 8 mm-diameter wound on mice with a dressing consisting of ADSC-spheroids embedded in a collagen gel. The ADSC- spheroids collagen dressing treated-group displayed a significant faster healing rate after one week than its untreated counterpart. Data from histology sections of the wounds suggest that the quicker healing rates by ADSC-spheroids embedded collagen dressing treatment may be due to the reduction of inflammation in the wound healing process. The establishment of the ADSC-spheroids collagen dressing is beneficial to patients with skin wounds. The dressing is also simple to prepare and is convenient to be used in patients. Therefore, ADSC-spheroids collagen dressing may provide a clinical alternative to promote wound healing.
中文摘要..............................................I
Abstract.............................................II
誌謝..................................................III
縮寫字對照表...........................................IV
目錄..................................................VI
表目錄................................................VIII
圖目錄................................................IX
壹、前言..............................................1
2.1細胞培養...........................................7
2.1.1培養條件.........................................7
2.1.2小腸表皮細胞株C2BBe1繼代培養.......................7
2.1.3人類脂肪幹細胞ADSC 繼代培養........................7
2.1.4小鼠巨噬細胞株RAW264.7 繼代培養....................8
2.2管狀結構形成 (Tube-formation).......................8
2.3免疫螢光染色........................................8
2.4體外傷口癒合模式.....................................9
2.5脂肪幹細胞類球體製作與培養............................9
2.6細胞存活螢光檢測.....................................10
2.7細胞增生生長曲線.....................................10
2.8巨噬細胞RAW264.7發炎反應試驗..........................10
2.9酵素結合免疫吸附分析 (ELISA) 檢測發炎因子表現量.........11
2.10三維膠原蛋白凝膠製備 (3D collagen gel)...............11
2.11裸鼠皮膚層傷口癒合模式...............................12
2.12免疫組織化學染色....................................12
2.13免疫組織螢光染色....................................12
2.14細胞層片製作 (Cell sheet)...........................13
2.15表皮化脂肪幹細胞之分化...............................14
2.16數據統計分析........................................14
參、結果................................................15
3.1脂肪幹細胞ADSC與小腸上皮細胞株C2BBe1共培養的形態........15
3.2管狀結構形成對脂肪幹細胞特性的影響......................15
3.3脂肪幹細胞條件培養液對小腸上皮細胞株移動能力的影響........16
3.4脂肪幹細胞類球體對生長速率的影響........................17
3.5脂肪幹細胞類球體條件培養液對發炎反應的影響...............17
3.6脂肪幹細胞類球體於膠原蛋白凝膠設計與製作.................17
3.7裸鼠皮膚傷口癒合模式I..................................18
3.8裸鼠皮膚傷口癒合模式II.................................19
3.9維他命C衍生物A2-P形成細胞組織層對細胞形態的影響...........20
3.10脂肪幹細胞培養於嵌入式培養皿與分化培養液對細胞形態的影響..20
肆、討論.................................................22
伍、參考文獻.............................................27

中文摘要..............................................I
Abstract.............................................II
誌謝..................................................III
縮寫字對照表...........................................IV
目錄..................................................VI
表目錄................................................VIII
圖目錄................................................IX
壹、前言..............................................1
2.1細胞培養...........................................7
2.1.1培養條件.........................................7
2.1.2小腸表皮細胞株C2BBe1繼代培養.......................7
2.1.3人類脂肪幹細胞ADSC 繼代培養........................7
2.1.4小鼠巨噬細胞株RAW264.7 繼代培養....................8
2.2管狀結構形成 (Tube-formation).......................8
2.3免疫螢光染色........................................8
2.4體外傷口癒合模式.....................................9
2.5脂肪幹細胞類球體製作與培養............................9
2.6細胞存活螢光檢測.....................................10
2.7細胞增生生長曲線.....................................10
2.8巨噬細胞RAW264.7發炎反應試驗..........................10
2.9酵素結合免疫吸附分析 (ELISA) 檢測發炎因子表現量.........11
2.10三維膠原蛋白凝膠製備 (3D collagen gel)...............11
2.11裸鼠皮膚層傷口癒合模式...............................12
2.12免疫組織化學染色....................................12
2.13免疫組織螢光染色....................................12
2.14細胞層片製作 (Cell sheet)...........................13
2.15表皮化脂肪幹細胞之分化...............................14
2.16數據統計分析........................................14
參、結果................................................15
3.1脂肪幹細胞ADSC與小腸上皮細胞株C2BBe1共培養的形態........15
3.2管狀結構形成對脂肪幹細胞特性的影響......................15
3.3脂肪幹細胞條件培養液對小腸上皮細胞株移動能力的影響........16
3.4脂肪幹細胞類球體對生長速率的影響........................17
3.5脂肪幹細胞類球體條件培養液對發炎反應的影響...............17
3.6脂肪幹細胞類球體於膠原蛋白凝膠設計與製作.................17
3.7裸鼠皮膚傷口癒合模式I..................................18
3.8裸鼠皮膚傷口癒合模式II.................................19
3.9維他命C衍生物A2-P形成細胞組織層對細胞形態的影響...........20
3.10脂肪幹細胞培養於嵌入式培養皿與分化培養液對細胞形態的影響..20
肆、討論.................................................22
伍、參考文獻.............................................27
1. Clark, R.A., K. Ghosh, and M.G. Tonnesen, Tissue engineering for cutaneous wounds. J Invest Dermatol, 2007. 127(5): p. 1018-29.
2. Madison, K.C., Barrier function of the skin: "la raison d'etre" of the epidermis. J Invest Dermatol, 2003. 121(2): p. 231-41.
3. Sharma, R., et al., Epidermal-like architecture obtained from equine keratinocytes in three-dimensional cultures. J Tissue Eng Regen Med, 2013.
4. Brohem, C.A., et al., Artificial skin in perspective: concepts and applications. Pigment Cell Melanoma Res, 2011. 24(1): p. 35-50.
5. Briggaman, R.A. and C.E. Wheeler, Jr., The epidermal-dermal junction. J Invest Dermatol, 1975. 65(1): p. 71-84.
6. Presland, R.B. and B.A. Dale, Epithelial structural proteins of the skin and oral cavity: function in health and disease. Crit Rev Oral Biol Med, 2000. 11(4): p. 383-408.
7. Markeson, D., et al., Scarring, stem cells, scaffolds and skin repair. J Tissue Eng Regen Med, 2015. 9(6): p. 649-68.
8. You, H.J. and S.K. Han, Cell therapy for wound healing. 2014. 29(3): p. 311-9.
9. Zahorec, P., et al., Mesenchymal stem cells for chronic wounds therapy. Cell Tissue Bank, 2015. 16(1): p. 19-26.
10. YU-WEN, Y., Epidemiological Characteristics and Medical Utilization Profiles of Patients Hospitalzed of Burn injury in Taiwan,2000-2010. 2014, National Defense Medical Institute of Public Health
11. Lee, S.H., J.H. Lee, and K.H. Cho, Effects of Human Adipose-derived Stem Cells on Cutaneous Wound Healing in Nude Mice. Ann Dermatol, 2011. 23(2): p. 150-5.
12. Jones, J.E., E.A. Nelson, and A. Al-Hity, Skin grafting for venous leg ulcers. Cochrane Database Syst Rev, 2013. 1: p. Cd001737.
13. Enshaei, A. and N. Masoudi, Survey of early complications of primary skin graft and secondary skin graft (delayed) surgery after resection of burn waste in hospitalized burn patients. Glob J Health Sci, 2014. 6(7 Spec No): p. 98-102.
14. Cordeiro, J.V. and A. Jacinto, The role of transcription-independent damage signals in the initiation of epithelial wound healing. Nat Rev Mol Cell Biol, 2013. 14(4): p. 249-62.
15. O’Loughlin, A. and T. O’Brien, Topical Stem and Progenitor Cell Therapy for Diabetic Foot Ulcers. Stem Cells in Clinic and Research. 2011.
16. Arnoux, V., et al., Cutaneous Wound Reepithelialization, in Rise and Fall of Epithelial Phenotype. 2005, Springer US. p. 111-134.
17. Hong, S.J., et al., Topically delivered adipose derived stem cells show an activated-fibroblast phenotype and enhance granulation tissue formation in skin wounds. PLoS One, 2013. 8(1): p. e55640.
18. Lee, J.C., S. Kandula, and N.S. Sherber, Beyond wet-to-dry: a rational approach to treating chronic wounds. Eplasty, 2009. 9: p. e14.
19. Halim, A.S., T.L. Khoo, and S.J. Mohd Yussof, Biologic and synthetic skin substitutes: An overview. Indian J Plast Surg, 2010. 43(Suppl): p. S23-8.
20. Sarabahi, S., Recent advances in topical wound care. Indian J Plast Surg, 2012. 45(2): p. 379-87.
21. Vindenes, H., [Skin transplantation]. Tidsskr Nor Laegeforen, 1999. 119(27): p. 4050-3.
22. Lin, S.D., et al., Microskin autograft with pigskin xenograft overlay: a preliminary report of studies on patients. Burns, 1992. 18(4): p. 321-5.
23. Hasegawa, T., et al., Keratinocyte progenitor cells reside in human subcutaneous adipose tissue. PLoS One, 2015. 10(2): p. e0118402.
24. Potten, C.S. and R.J. Morris, Epithelial stem cells in vivo. J Cell Sci Suppl, 1988. 10: p. 45-62.
25. Grossman, Z., The stem cell concept revisited: self-renewal capacity is a dynamic property of hemopoietic cells. Leuk Res, 1986. 10(8): p. 937-50.
26. Rodrigues, M., et al., Progenitor Cell Dysfunctions Underlie Some Diabetic Complications. Am J Pathol, 2015.
27. Yu, J., et al., Stemness and transdifferentiation of adipose-derived stem cells using L-ascorbic acid 2-phosphate-induced cell sheet formation. Biomaterials, 2014. 35(11): p. 3516-26.
28. Hassan, W.U., U. Greiser, and W. Wang, Role of adipose-derived stem cells in wound healing. Wound Repair Regen, 2014. 22(3): p. 313-25.
29. Goodell, M.A., H. Nguyen, and N. Shroyer, Somatic stem cell heterogeneity: diversity in the blood, skin and intestinal stem cell compartments. Nat Rev Mol Cell Biol, 2015. 16(5): p. 299-309.
30. van der Veen, V.C., et al., Stem cells in burn eschar. Cell Transplant, 2012. 21(5): p. 933-42.
31. Chavez-Munoz, C., et al., Transdifferentiation of adipose-derived stem cells into keratinocyte-like cells: engineering a stratified epidermis. PLoS One, 2013. 8(12): p. e80587.
32. Gimble, J. and F. Guilak, Adipose-derived adult stem cells: isolation, characterization, and differentiation potential. Cytotherapy, 2003. 5(5): p. 362-9.
33. Ong, W.K. and S. Sugii, Adipose-derived stem cells: fatty potentials for therapy. Int J Biochem Cell Biol, 2013. 45(6): p. 1083-6.
34. Uysal, C.A., et al., The Effect of Bone-Marrow-Derived Stem Cells and Adipose-Derived Stem Cells on Wound Contraction and Epithelization. Adv Wound Care (New Rochelle), 2014. 3(6): p. 405-413.
35. Brett, D., A Review of Collagen and Collagen-based Wound Dressings. Wounds, 2008. 20(12): p. 347-56.
36. Li, H., et al., Effects of multiple agents on epithelial differentiation of rabbit adipose-derived stem cells in 3D culture. Tissue Eng Part A, 2012. 18(17-18): p. 1760-70.
37. Janeczek Portalska, K., et al., Endothelial differentiation of mesenchymal stromal cells. PLoS One, 2012. 7(10): p. e46842.
38. Deveza, L., et al., Paracrine release from nonviral engineered adipose-derived stem cells promotes endothelial cell survival and migration in vitro. Stem Cells Dev, 2013. 22(3): p. 483-91.
39. Du, Y., et al., Adipose-derived stem cells differentiate to keratocytes in vitro. Mol Vis, 2010. 16: p. 2680-9.
40. Wang, C.C., et al., Spherically symmetric mesenchymal stromal cell bodies inherent with endogenous extracellular matrices for cellular cardiomyoplasty. Stem Cells, 2009. 27(3): p. 724-32.
41. Abbott, R.D. and D.L. Kaplan, Strategies for improving the physiological relevance of human engineered tissues. Trends Biotechnol, 2015. 33(7): p. 401-7.
42. Lin, R.Z. and H.Y. Chang, Recent advances in three-dimensional multicellular spheroid culture for biomedical research. Biotechnol J, 2008. 3(9-10): p. 1172-84.
43. Hsu, S.H., et al., Substrate-dependent modulation of 3D spheroid morphology self-assembled in mesenchymal stem cell-endothelial progenitor cell coculture. Biomaterials, 2014. 35(26): p. 7295-307.
44. Zhang, S., et al., The effects of spheroid formation of adipose-derived stem cells in a microgravity bioreactor on stemness properties and therapeutic potential. Biomaterials, 2015. 41: p. 15-25.
45. Liu, B.H., et al., Spheroid formation and enhanced cardiomyogenic potential of adipose-derived stem cells grown on chitosan. Biores Open Access, 2013. 2(1): p. 28-39.
46. Bartosh, T.J., et al., Aggregation of human mesenchymal stromal cells (MSCs) into 3D spheroids enhances their antiinflammatory properties. Proc Natl Acad Sci U S A, 2010. 107(31): p. 13724-9.
47. Chung, H.M., C.H. Won, and J.H. Sung, Responses of adipose-derived stem cells during hypoxia: enhanced skin-regenerative potential. Expert Opin Biol Ther, 2009. 9(12): p. 1499-508.
48. Lee, E.Y., et al., Hypoxia-enhanced wound-healing function of adipose-derived stem cells: increase in stem cell proliferation and up-regulation of VEGF and bFGF. Wound Repair Regen, 2009. 17(4): p. 540-7.
49. Kang, S., S.M. Kim, and J.H. Sung, Cellular and molecular stimulation of adipose-derived stem cells under hypoxia. Cell Biol Int, 2014. 38(5): p. 553-62.
50. Rehman, J., et al., Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells. Circulation, 2004. 109(10): p. 1292-8.
51. Grayson, W.L., et al., Hypoxia enhances proliferation and tissue formation of human mesenchymal stem cells. Biochem Biophys Res Commun, 2007. 358(3): p. 948-53.
52. Kim, W.S., B.S. Park, and J.H. Sung, The wound-healing and antioxidant effects of adipose-derived stem cells. Expert Opin Biol Ther, 2009. 9(7): p. 879-87.
53. Buravkova, L.B., et al., [Characteristics of human lipoaspirate-isolated mesenchymal stromal cells cultivated under a lower oxygen tension]. Tsitologiia, 2009. 51(1): p. 5-11.
54. Rubina, K., et al., Adipose stromal cells stimulate angiogenesis via promoting progenitor cell differentiation, secretion of angiogenic factors, and enhancing vessel maturation. Tissue Eng Part A, 2009. 15(8): p. 2039-50.
55. Gehmert, S., et al., Angiogenesis: the role of PDGF-BB on adipose-tissue derived stem cells (ASCs). Clin Hemorheol Microcirc, 2011. 48(1): p. 5-13.
56. Yang, E.K., et al., Tissue engineered artificial skin composed of dermis and epidermis. Artif Organs, 2000. 24(1): p. 7-17.
57. Hsu, S.H. and P.S. Hsieh, Self-assembled adult adipose-derived stem cell spheroids combined with biomaterials promote wound healing in a rat skin repair model. Wound Repair Regen, 2015. 23(1): p. 57-64.
58. Dyson, M., et al., Comparison of the effects of moist and dry conditions on dermal repair. J Invest Dermatol, 1988. 91(5): p. 434-9.
59. Hinman, C.D. and H. Maibach, EFFECT OF AIR EXPOSURE AND OCCLUSION ON EXPERIMENTAL HUMAN SKIN WOUNDS. Nature, 1963. 200: p. 377-8.
60. Junker, J.P., et al., Clinical Impact Upon Wound Healing and Inflammation in Moist, Wet, and Dry Environments. Adv Wound Care (New Rochelle), 2013. 2(7): p. 348-356.
61. Liang, C.C., A.Y. Park, and J.L. Guan, In vitro scratch assay: a convenient and inexpensive method for analysis of cell migration in vitro. Nat Protoc, 2007. 2(2): p. 329-33.
62. Gao, S., et al., Mouse bone marrow-derived mesenchymal stem cells induce macrophage M2 polarization through the nuclear factor-kappaB and signal transducer and activator of transcription 3 pathways. Exp Biol Med (Maywood), 2014. 239(3): p. 366-75.
63. Xue, J., et al., Gene-modified mesenchymal stem cells protect against radiation-induced lung injury. Mol Ther, 2013. 21(2): p. 456-65.
64. Wang, X., et al., The mouse excisional wound splinting model, including applications for stem cell transplantation. Nat Protoc, 2013. 8(2): p. 302-9.
65. Cheng, N.C., et al., Short-term spheroid formation enhances the regenerative capacity of adipose-derived stem cells by promoting stemness, angiogenesis, and chemotaxis. Stem Cells Transl Med, 2013. 2(8): p. 584-94.
66. Jung, H., et al., Transforming growth factor-beta 1 in adipose derived stem cells conditioned medium is a dominant paracrine mediator determines hyaluronic acid and collagen expression profile. Cytotechnology, 2011. 63(1): p. 57-66.
67. Shang, Q., et al., Delivery of Adipose-derived Stem Cells Attenuates Adipose Tissue Inflammation and Insulin Resistance in Obese Mice through Remodeling Macrophage Phenotypes. Stem Cells Dev, 2015.
68. Carvalho, J.L., et al., Innovative Strategies for Tissue Engineering. Advances in Biomaterials Science and Biomedical Applications. 2013.
69. Imamura, M., [Extracellular matrix components and angiogenesis]. Nihon Yakurigaku Zasshi, 1996. 107(3): p. 153-60.
70. Grant, D.S., et al., Angiogenesis as a component of epithelial-mesenchymal interactions. Exs, 1995. 74: p. 235-48.
71. Rankin, C.R., et al., Annexin A2 regulates beta1 integrin internalization and intestinal epithelial cell migration. J Biol Chem, 2013. 288(21): p. 15229-39.
72. Kim, W.S., B.S. Park, and J.H. Sung, Protective role of adipose-derived stem cells and their soluble factors in photoaging. Arch Dermatol Res, 2009. 301(5): p. 329-36.
73. Bhang, S.H., et al., Efficacious and clinically relevant conditioned medium of human adipose-derived stem cells for therapeutic angiogenesis. Mol Ther, 2014. 22(4): p. 862-72.
74. Skiles, M.L., et al., Use of culture geometry to control hypoxia-induced vascular endothelial growth factor secretion from adipose-derived stem cells: optimizing a cell-based approach to drive vascular growth. Tissue Eng Part A, 2013. 19(21-22): p. 2330-8.
75. Stolarska, M.A., Y. Kim, and H.G. Othmer, Multi-scale models of cell and tissue dynamics. Philos Trans A Math Phys Eng Sci, 2009. 367(1902): p. 3525-53.
76. Freyer, J.P. and R.M. Sutherland, Proliferative and clonogenic heterogeneity of cells from EMT6/Ro multicellular spheroids induced by the glucose and oxygen supply. Cancer Res, 1986. 46(7): p. 3513-20.
77. Pasparakis, M., I. Haase, and F.O. Nestle, Mechanisms regulating skin immunity and inflammation. Nat Rev Immunol, 2014. 14(5): p. 289-301.
78. Thiel, D.J., et al., Observation of an unexpected third receptor molecule in the crystal structure of human interferon-gamma receptor complex. Structure, 2000. 8(9): p. 927-36.
79. Dunn, L., et al., Murine model of wound healing. J Vis Exp, 2013(75): p. e50265.
80. Seo, G., et al., Adipose-derived stem cell conditioned medium accelerates keratinocyte differentiation via the up-regulation of miR-24. Exp Dermatol, 2015.
81. Kuo, Y.R., et al., Adipose-derived Stem Cells Accelerate Diabetic Wound Healing through the Induction of Autocrine and Paracrine Effects. Cell Transplant, 2015.
82. Hu, R., et al., Fibroblast-like cells differentiated from adipose-derived mesenchymal stem cells for vocal fold wound healing. PLoS One, 2014. 9(3): p. e92676.
83. Lin, Y.H., et al., The effects of microenvironment on wound healing by keratinocytes derived from mesenchymal stem cells. Ann Plast Surg, 2013. 71 Suppl 1: p. S67-74.
84. Uysal, A.C. and H. Mizuno, Tendon regeneration and repair with adipose derived stem cells. Curr Stem Cell Res Ther, 2010. 5(2): p. 161-7.
85. Li, H., et al., Epithelial-differentiated adipose-derived stem cells seeded bladder acellular matrix grafts for urethral reconstruction: an animal model. Tissue Eng Part A, 2014. 20(3-4): p. 774-84.
86. Varghese, M.C., et al., Local environment of chronic wounds under synthetic dressings. Arch Dermatol, 1986. 122(1): p. 52-7.
87. Alvarez, O.M., P.M. Mertz, and W.H. Eaglstein, The effect of occlusive dressings on collagen synthesis and re-epithelialization in superficial wounds. J Surg Res, 1983. 35(2): p. 142-8.
88. Rubio, P.A., Use of semiocclusive, transparent film dressings for surgical wound protection: experience in 3637 cases. Int Surg, 1991. 76(4): p. 253-4.
89. Moon CH, C.T., New wound dressing techniques to accelerate healing. Curr Treat Options Infect Dis. 2003;5:251–60., 2003.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

1. 利用新式三維細胞培養系統研究癌症與組織工程中異種細胞間交互作用
2. 治療性anti-IgE單株抗體藥物在體外重組模式及體內基因轉殖鼠之藥理作用機制
3. 建構並鑑定創傷弧菌調控子LytR的突變株
4. 創傷弧菌YJ016中調控環狀雙鳥嘌呤單磷酸相關的 vva0325-36基因群功能分析
5. DTriP-22抑制腸病毒71型之機制探討
6. 細菌基因表現之調控: HptB磷酸根轉移系統與三磷酸腺苷水解功能必須之轉錄蛋白AcoK之功能分析
7. 比較分析綠膿桿菌兩個尿嘧啶雙磷酸葡萄糖去氫酶
8. 標的表現IgE的B淋巴細胞以調控IgE之生成
9. 克雷白氏肺炎桿菌第三型線毛主要單體蛋白MrkA—線毛組裝有關區域之搜尋以及於呈現系統發展之應用
10. 綠膿桿菌HptB訊息傳遞路徑-雜合感應子之分析及下游基因之搜尋
11. 克雷白氏肺炎桿菌磷酸酪胺酸激酶KpWzc對其下游酵素ManC, Gnd活性影響之分析與Ugd磷酸酪胺酸殘基鑑定與下游受質之搜尋
12. 克雷白氏肺炎桿菌第三型線毛主要單元體MrkA─參與線毛堆疊之重要胺基酸分析以及線毛的疫苗呈現系統之建構
13. Histidine-containing Phosphotransfer Protein-B (HptB) Regulates Swarming Motility through Partner-switching System in Pseudomonas aeruginosa PAO1 strain
14. 利用磁性粒子與光敏性水膠建構特殊細胞排列的組織
15. 創傷弧菌外毒素RtxA 高量甘氨酸-天門冬氨酸區域人源單鏈抗體之篩選以及此區域的細胞表面結合特性之研究
 
* *