帳號:guest(18.116.23.51)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):劉士榮
作者(外文):Liou, Shih Rong
論文名稱(中文):Ed在果蠅蛻變過程中對上皮細胞置換過程的影響
論文名稱(外文):Effects of Ed on the Replacement of Epithelial Cells During Drosophila Metamorphosis
指導教授(中文):徐瑞洲
指導教授(外文):Hsu, Jui Chou
口試委員(中文):桑自剛
張慧雲
學位類別:碩士
校院名稱:國立清華大學
系所名稱:分子醫學研究所
學號:102080532
出版年(民國):104
畢業學年度:103
語文別:英文中文
論文頁數:28
中文關鍵詞:果蠅蛻變上皮細胞
外文關鍵詞:Echinoid (Ed)
相關次數:
  • 推薦推薦:0
  • 點閱點閱:68
  • 評分評分:*****
  • 下載下載:2
  • 收藏收藏:0
細胞黏著分子 (cell adhesion molecule) Echinoid (Ed) 是一個穿膜蛋白,位於果蠅的adherens junctions上。其在細胞內的結構包含了很多重要的motif,其中一個就是和胞吞作用的機制相關的Nedd4-binding motif。在這個研究中,我們發現Ed參與了在果蠅蛻皮過程中的一個重要步驟,也就是幼蟲表皮細胞 (larval epidermal cells) 與成蟲組織原細胞 (histoblasts) 之間的交換。在幼蟲時期,胚胎每個體節的兩側都具有組織成巢狀的組織原細胞群,一但進入蛹時期後,這些組織原細胞會受到各式各樣的蛋白質訊號調控,快速的增生並擴張領土,同時原本就存在的幼蟲表皮細胞會受到推擠並往基底方向下沉,最終邁向死亡。最後,腹部所有的表皮細胞都會被組織原細胞取代並覆蓋。如果我們在幼蟲表皮細胞表現Nedd4-binding motif被突變的ed,在腹部的背部中線位置會有缺口產生。在缺口當中可以觀察到有剩餘的幼蟲表皮細胞存在,有些細胞的細胞膜還呈現扭曲的型狀。根據這些結果,我們推測Ed若在Nedd4-binding motif發生突變,可能會使它無法順利被胞吞回收並累積在細胞膜上,加強了細胞之間的黏著性並阻止它們的死亡,因此在表皮留下了沒有成蟲組織原細胞覆蓋的缺口。
The cell adhesion molecule (CAM), Echinoid (Ed), is a transmembrane protein on adherens junctions of Drosophila. The intracellular domain of Ed contains several important motifs, one of them is Nedd4-binding motif, which is related to endocytosis process. In this study, we found that Ed is involved in the normal replacement of abdominal larval epidermal cells (LECs) with adult histoblasts. This process is an important event happened during metamorphosis in Drosophila. At larval stage, the histoblasts are organized in nests and located at lateral sides of each segment. When the embryo reaches pupa stage, histoblast nests will be regulated by various protein signals and proliferate rapidly to expand their territory. At the same time, the original LECs will be pushed away, sink to the basal side and undergo cell death. Finally, all of the abdominal epidermis will be covered by histoblast cells. If we overexpressed the truncated form of ed which Nedd4-binding motif was mutated in LECs, a cleft will form in the midline of the dorsal abdomen. There were remaining LECs in the cleft and some of them had zigzag membrane. This results suggest that Ed with Nedd4-binding motif mutated may have problem undergoing endocytosis and accumulate on membranes of LECs, which strengthens the adhesion of them and prevents them from cell death, thus leaving a cleft on epidermis without the covering of adult histoblasts.
Introduction 2
Materials and Methods 5
Results 7
1. Overexpression of truncated Ed in LECs disrupts the normal development of abdominal epithelial cells 7
2. Overexpression of truncated Ed in LECs affects the frequency of delamination events occurred in LECs 8
3. LECs act in different manner between pupae overexpressing edFL and edFL-PPPF after 38 hours APF 9
4. Reducing atf3 expression level can reduce the formation abdominal clefts 10
Discussion 12
1. Ed as a newfound protein to be involved in the replacement of epithelial cells 12
2. A novel relationship of Ed and Atf-3 13
Figures 15
References 24
Aronheim, A., Zandi, E., Hennemann, H., Elledge, S. J. and Karin, M. (1997). Isolation of an AP-1 repressor by a novel method for detecting protein-protein interactions. Mol. Cell. Biol. 17, 3094-3102.

Bai, J.-M., Chiu, W.-H., Wang, J.-C., Tzeng, T.-H., Perrimon, N., and Hsu, J.-C. (2001). The cell adhesion molecule Echinoid defines a new pathway that antagonizes the Drosophila EGF receptor signaling pathway. Development 128, 591-601.

Bischoff, M., and Cseresnyes, Z. (2009). Cell rearrangements, cell divisions and
cell death in a migrating epithelial sheet in the abdomen of Drosophila. Development 136, 2403-2411.

Cavallaro, U., and Dejana, E. (2011). Adhesion molecule signaling: not always a sticky business. Nature reviews Molecular cell biology 12, 189-197.

Garcia-Bellido, A. and Merriam, J. R. (1971). Clonal parameters of tergite development in Drosophila. Dev. Biol. 26, 264-276.

Guillot, C. and Lecuit, T. (2013) Adhesion disengagement uncouples intrinsic and extrinsic forces to drive cytokinesis in epithelial tissues. Developmental Cell 24, 227-241.


Hai, T. W., Liu, F., Coukos, W. J. and Green, M. R. (1989). Transcription factor ATF cDNA clones: an extensive family of leucine zipper proteins able to selectively form DNA-binding heterodimers. Genes Dev. 3, 2083-2090.

Harden, N. (2002). Signaling pathways directing the movement and fusion of epithelial sheets: lessons from dorsal closure in Drosophila. Differentiation 70, 181-203.

Harris, T.J., and Tepass, U. (2010). Adherens junctions: from molecules to morphogenesis. Nature reviews Molecular cell Biology 11, 502-514.

Ho, Y.H., Lien, M.T., Lin, C.M., Wei, S.Y., Chang. L.H., and Hsu, J.C. (2010). Echinoid regulates Flamingo endocytosis to control ommatidial rotation in the Drosophila eye. Development 137, 745-754.

Hsu, J.C., Laz, T., Mohn, K. L. and Taub, R. (1991). Identification of LRF-1, a leucine-zipper protein that is rapidly and highly induced in regenerating liver. Proc. Natl. Acad. Sci. USA 88, 3511-3515.

Kockel, L., Zeitlinger, J., Staszewski, L. M., Mlodzik, M. and Bohmann, D. (1997). Jun in Drosophila development: redundant and non-redundant functions, and regulation by two MAPK signal transduction pathways. Genes Dev. 11, 1748-1758.

Kockel, L., Homsy, J. G. and Bohmann, D. (2001). Drosophila AP-1: lessons from an invertebrate. Oncogene 20, 2347-2364.

Madhavan, M. M. and Schneiderman, H. A. (1977). Histological analysis of the dynamics of growth of imaginal discs and histoblast nests during the larval development of Drosophila melanogaster. Dev. Genes Evol. 183, 269-305.

Madhavan, M. M. and Madhavan, K. (1980). Morphogenesis of the epidermis of adult abdomen of Drosophila. J. Embryol. Exp. Morphol. 60, 1-31.

Martin, P. and Wood, W. (2002). Epithelial fusions in the embryo. Curr. Opin. Cell Biol. 14, 569-574.

Ninov, N., Chiarelli, D. A. and Martin-Blanco, E. (2007). Extrinsic and intrinsic mechanisms directing epithelial cell sheet replacement during Drosophila metamorphosis. Development 134, 367-379.

Ninov, N., Manjon, C. and Martin-Blanco, E. (2009). Dynamic control of cell cycle and growth coupling by ecdysone, EGFR, and PI3K signaling in Drosophila histoblasts. PLoS Biol. 7, E1000079.

Ninov,N., Menezes-Cabral, S., Prat-Rojo, C., Manjon, C., Weiss, A., Pyrowolakis, G., Affolter, M. and Martin-Blanco, E. (2010). Dpp signaling directs cell motility and invasiveness during epithelial morphogenesis. Curr. Biol. 20, 513-520.

Oda, H., and Tsukita, S. (2001) Real-time imaging of cell-cell adherens junctions reveals that Drosophila mesoderm invagination begins with two phases of apical constriction of cells. Journal of cell science 114, 493-501.

Pastor-Pareja, J. C., Grawe, F., Martin-Blanco, E. and Garcia-Bellido, A. (2004). Invasive cell behavior during Drosophila imaginal disc eversion is mediated by the JNK signaling cascade. Dev. Cell 7, 387-399.

Polo, S. (2010). Signaling-mediated control of ubiquitin ligases in endocytosis. BMC biology 10, 25.

Robinson, M.S. (2004). Adaptable adaptors for coated vesicles. Trendsin cell Biology 14, 167-174.

Roseland, C. R. and Schneiderman, H. A. (1979). Regulation and metamorphosis of the abdominal histoblasts of Drosophila melanogaster. Dev. Genes Evol. 186, 235-265.

Sekyrova, P., Bohmann, D., Jindra, M. and Uhlirova, M. (2010). Interaction between Drosophila bZIP proteins Atf3 and Jun prevents replacement of epithelial cells during metamorphosis. Development 137, 141-150.

St Jhonson, D. and Ahringer, J. (2010) Cell polarity in eggs and epithelia: parallels and diversity. Review Cell 141, 757-774.

Wei, S.Y., Escudero, L.M., Yu, F., Chang, L.H., Chen, L.Y., Ho, Y.H., Lin, C.M., Chou, C.S., Chia, W., Modolell, J., et al. (2005). Echinoid is a component of adherens junctions that cooperates with DE-Cadherin to mediate cell adhesion. Development cell 8, 493-504.

Xia, Y. and Karin, M. (2004). The control of cell motility and epithelial morphogenesis by Jun kinases. Trends Cell Biol. 14, 94-101.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *