帳號:guest(3.137.210.16)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):尤鈺慈
作者(外文):Yu, Yu Tzu
論文名稱(中文):高親和性磷酸二酯酶對衰老細胞粒線體調控之探討
論文名稱(外文):The Role of High Affinity Phosphodiesterase PDE2 in Mitochondria of Senescent Yeast Cells
指導教授(中文):張壯榮
指導教授(外文):Chang,Chuang Rung
口試委員(中文):鄭子豪
鄭惠春
口試委員(外文):Cheng, Tsu Hao
Cheng, Hui Chun
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生物科技研究所
學號:102080527
出版年(民國):104
畢業學年度:103
語文別:英文中文
論文頁數:73
中文關鍵詞:粒線體動態平衡衰老白藜蘆醇磷酸二酯酶
外文關鍵詞:mitochondrial dynamicssenescentresveratrolphosphodiesterase
相關次數:
  • 推薦推薦:0
  • 點閱點閱:35
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
粒線體是一種不斷進行融合與分裂的動態胞器,粒線體動態平衡對於維持粒線體的功能非常重要。老化是一種造成生理與粒線體功能損害的退化性過程,在老化的酵母菌細胞中粒線體呈現破碎的型態。白藜蘆醇是一種抗老的天然多酚,我們發現白藜蘆醇除了降低衰老酵母菌細胞中活性氧化物的含量,也減少破碎的粒線體,但對於白藜蘆醇如何調控粒線體的機制並不清楚。有研究指出,白藜蘆醇可以透過抑制磷酸二酯酶的活性來改善細胞中老化的現象,因此我們針對磷酸二酯酶對於衰老酵母菌細胞中粒線體作用加以探討。本論文的實驗結果指出,白藜蘆醇無法在缺乏磷酸二酯酶的衰老酵母菌細胞中改變粒線體型態,且其調控粒線體融合分裂基因也有不同的表現; 另外,白藜蘆醇亦無法在缺乏磷酸二酯酶的衰老酵母菌細胞中減低活性氧化物的含量。我們進一步發現磷酸二酯酶的下游因子:環腺苷酸及蛋白激酶A也參與白藜蘆醇改變粒線體型態及降低活性氧化物的機制。我們的研究結果指出,白藜蘆醇在衰老酵母菌中調控粒線體型態及降低活性氧化物的含量需要透過磷酸二酯酶來達成。
Mitochondria are dynamic organelles that continuously undergo fusion and fission. Mitochondrial dynamics is important for maintaining mitochondrial integrity and cellular function. Aging is a degenerative process that exhibit physiological and mitochondrial dysfunction. Previous studies of our lab revealed mitochondrial fragmentation was present in senescent yeast cells. Resveratrol, a polyphenol mitigated mitochondrial fragmentation and superoxide level. In addition, resveratrol elevated membrane potential in the senescent yeast cells. However, the mechanism of how resveratrol-mediated mitochondria in senescent yeast cells remains unclear. We aim to elucidate the potential mechanisms. Previous studies indicated resveratrol can ameliorate aging-related metabolic phenotypes via inhibiting phosphodiesterase activity. In this thesis, I applied biotin-streptavidin system to isolate replicative senescent yeast cells to clarify the effect of phosphodiesterase, Pde2 on mitochondria. My results demonstrated that deletion of PDE2 reverted the effects of resveratrol on mitochondria dynamics and showed different transcription level of fission/ fusion genes. In the mitochondrial activity assay, resveratrol did not mitigate the superoxide level in Δpde2 senescent cells. Those results indicated that Pde2 is required for resveratrol-mediated mitochondrial dynamics and superoxide scavenging. These evidences provide hints to elucidate resveratrol signaling pathway in the regulation of mitochondrial dynamics in cellular senescence.
Chapter 1 Introduction 1
1.1 Mitochondria are important organelles in cells. 1
1.1.1 Mitochondrial dynamics is crucial for cellular functions. 1
1.1.2 The mechanism of mitochondrial dynamics in yeast. 2
1.2 Aging is a degenerative process. 4
1.2.1 The yeast aging models 4
1.2.2 Mitochondria play important roles in aging process. 4
1.3 Resveratrol, a nature polyphenol with benefits for health. 6
1.3.1 Resveratrol prevents and delays aging. 6
1.3.2 The effects of resveratrol are associated with mitochondria. 7
1.4 Phosphodiesterase breaks down cyclic nucleotide. 8
1.4.1 The activity of phosphodiesterase is inhibited by resveratrol. 8
1.4.2 Phosphodiesterase controls cAMP/PKA pathway in yeast 9
1.5 Specific aim 10
Chapter 2 Materials and methods 11
2.1 Yeast strains, medium and reagent 11
2.2 Experiment protocol 11
2.2.1 Isolation of senescent yeast cells 11
2.2.2 The cell viability of senescent yeast model 12
2.2.3 DiOC6(3) staining to observe the mitochondrial morphology 12
2.2.4 Yeast genomic DNA extraction 13
2.2.5 Yeast RNA extraction 13
2.2.6 Reverse transcription polymerase chain reaction 14
2.2.7 Real time PCR 15
2.2.8 Mitochondrial membrane potential detection 16
2.2.9 Mitochondrial superoxide level measurement 16
2.2.10 Cytosolic superoxide level measurement 16
2.2.11 Flow cytometry 17
Chapter 3 Results 18
3.1 Using biotin-streptavidin system to enrich replicative senescent yeast cells in the population. 18
3.2 Resveratrol reverses the mitochondrial morphology in senescent cells. 19
3.2.1 Resveratrol reduces senescent cells possessing fragmented mitochondria. 19
3.2.2 Resveratrol affects the gene expression profiles of fission/ fusion proteins. 20
3.3 Resveratrol affects mitochondrial activities in senescent cells. 22
3.3.1 Resveratrol improves the decreasing trend of mitochondrial membrane potential in senescent process. 22
3.3.2 Resveratrol reduces the superoxide level in the senescent cells. 23
3.3.3 Resveratrol affects mtDNA copy numbers in the senescent cells 23
3.4 PDE2 plays a role in resveratrol mediated mitochondrial dynamics in senescent cells. 25
3.4.1 Resveratrol effects on mitochondrial dynamics is different in senescent Δpde2 cells. 25
3.4.2 Δpde2 shows different fission/ fusion gene expressions after resveratrol treatment. 26
3.5 Deletion of PDE2 shows different mitochondrial activity after resveratrol treatment. 27
3.5.1 Resveratrol also improves the membrane potential of Δpde2 senescent cells. 27
3.5.2 Deletion of PDE2 blocks the ability of resveratrol as antioxidant in senescent process. 27
3.5.3 Resveratrol treatment shows different mtDNA copy numbers in ∆pde2 senescent cells. 28
3.6 Δpde2Δtpk3 slightly restores the mitochondrial morphology after resveratrol treatment. 29
3.7 Resveratrol don’t affect the mitochondrial membrane potential and mitochondrial superoxide level in Δpde2Δtpk3. 30
Chapter 4 Discussion and Conclusion 31
4.1 Pde2 participates in resveratrol mediated mitochondrial dynamics. 31
4.2 Resveratrol affects mitochondrial function not only through Pde2 32
4.3 Pde2 plays important role in resveratrol-mediated superoxide removal. 32
4.4 Phosphodiesterase plays different role in the yeast and mammal. 34
4.5 Conclusion 34
Chapter 5 Perspective 35
REFERENCE 36
Aerts, A.M., P. Zabrocki, I.E. Francois, D. Carmona-Gutierrez, G. Govaert, C. Mao, B. Smets, F. Madeo, J. Winderickx, B.P. Cammue, and K. Thevissen. 2008. Ydc1p ceramidase triggers organelle fragmentation, apoptosis and accelerated ageing in yeast. Cellular and molecular life sciences : CMLS. 65:1933-1942.
Archer, S.L. 2013. Mitochondrial dynamics--mitochondrial fission and fusion in human diseases. The New England journal of medicine. 369:2236-2251.
Aun, A., T. Tamm, and J. Sedman. 2013. Dysfunctional mitochondria modulate cAMP-PKA signaling and filamentous and invasive growth of Saccharomyces cerevisiae. Genetics. 193:467-481.
Baek, S.J., L.C. Wilson, and T.E. Eling. 2002. Resveratrol enhances the expression of non-steroidal anti-inflammatory drug-activated gene (NAG-1) by increasing the expression of p53. Carcinogenesis. 23:425-434.
Bai, Y., P. Hu, J.S. Park, J.H. Deng, X. Song, A. Chomyn, T. Yagi, and G. Attardi. 2004. Genetic and functional analysis of mitochondrial DNA-encoded complex I genes. Annals of the New York Academy of Sciences. 1011:272-283.
Bass, T.M., D. Weinkove, K. Houthoofd, D. Gems, and L. Partridge. 2007. Effects of resveratrol on lifespan in Drosophila melanogaster and Caenorhabditis elegans. Mechanisms of ageing and development. 128:546-552.
Beher, D., J. Wu, S. Cumine, K.W. Kim, S.C. Lu, L. Atangan, and M. Wang. 2009. Resveratrol is not a direct activator of SIRT1 enzyme activity. Chemical biology & drug design. 74:619-624.
Bereiter-Hahn, J., and M. Jendrach. 2010. Mitochondrial dynamics. International review of cell and molecular biology. 284:1-65.
Bieber, T.I. 1964. Mitochondrial oxidative phosphorylation: remarks about the mechanism. Biochemical and biophysical research communications. 16:501-504.
Bitterman, K.J., R.M. Anderson, H.Y. Cohen, M. Latorre-Esteves, and D.A. Sinclair. 2002. Inhibition of silencing and accelerated aging by nicotinamide, a putative negative regulator of yeast sir2 and human SIRT1. The Journal of biological chemistry. 277:45099-45107.
Bond, S., and M. Forgac. 2008. The Ras/cAMP/protein kinase A pathway regulates glucose-dependent assembly of the vacuolar (H+)-ATPase in yeast. The Journal of biological chemistry. 283:36513-36521.
Breen, D.M., T. Sanli, A. Giacca, and E. Tsiani. 2008. Stimulation of muscle cell glucose uptake by resveratrol through sirtuins and AMPK. Biochemical and biophysical research communications. 374:117-122.
Chen, H., and D.C. Chan. 2010. Physiological functions of mitochondrial fusion. Annals of the New York Academy of Sciences. 1201:21-25.
Cheung, W.Y. 1970. Cyclic nucleotide phosphodiesterase. Advances in biochemical psychopharmacology. 3:51-65.
Cheung, W.Y., and L. Salganicoff. 1967. Cyclic 3',5'-nucleotide phosphodiesterase: localization and latent activity in rat brain. Nature. 214:90-91.
Chevtzoff, C., J. Vallortigara, N. Averet, M. Rigoulet, and A. Devin. 2005. The yeast cAMP protein kinase Tpk3p is involved in the regulation of mitochondrial enzymatic content during growth. Biochimica et biophysica acta. 1706:117-125.
Chung, J.H. 2012. Metabolic benefits of inhibiting cAMP-PDEs with resveratrol. Adipocyte. 1:256-258.
Chung, J.H., V. Manganiello, and J.R. Dyck. 2012. Resveratrol as a calorie restriction mimetic: therapeutic implications. Trends in cell biology. 22:546-554.
Corbi, G., V. Conti, G. Scapagnini, A. Filippelli, and N. Ferrara. 2012. Role of sirtuins, calorie restriction and physical activity in aging. Frontiers in bioscience. 4:768-778.
Cucciolla, V., A. Borriello, A. Oliva, P. Galletti, V. Zappia, and F. Della Ragione. 2007. Resveratrol: from basic science to the clinic. Cell cycle. 6:2495-2510.
Dai, D.F., Y.A. Chiao, D.J. Marcinek, H.H. Szeto, and P.S. Rabinovitch. 2014. Mitochondrial oxidative stress in aging and healthspan. Longevity & healthspan. 3:6.
Dasgupta, B., and J. Milbrandt. 2007. Resveratrol stimulates AMP kinase activity in neurons. Proceedings of the National Academy of Sciences of the United States of America. 104:7217-7222.
Deryabina, Y.I., and R.A. Zvyagilskaya. 2000. The Ca(2+)-transport system of yeast (Endomyces magnusii) mitochondria: independent pathways for Ca(2+) uptake and release. Biochemistry. Biokhimiia. 65:1352-1356.
Drose, S., and U. Brandt. 2012. Molecular mechanisms of superoxide production by the mitochondrial respiratory chain. Advances in experimental medicine and biology. 748:145-169.
Escote, X., M. Miranda, S. Menoyo, B. Rodriguez-Porrata, D. Carmona-Gutierrez, H. Jungwirth, F. Madeo, R.R. Cordero, A. Mas, F. Tinahones, J. Clotet, and J. Vendrell. 2012. Resveratrol induces antioxidant defence via transcription factor Yap1p. Yeast. 29:251-263.
Gershon, H., and D. Gershon. 2000. The budding yeast, Saccharomyces cerevisiae, as a model for aging research: a critical review. Mechanisms of ageing and development. 120:1-22.
Gourlay, C.W., and K.R. Ayscough. 2005. Identification of an upstream regulatory pathway controlling actin-mediated apoptosis in yeast. Journal of cell science. 118:2119-2132.
Henze, K., and W. Martin. 2003. Evolutionary biology: essence of mitochondria. Nature. 426:127-128.
Hermann, G.J., J.W. Thatcher, J.P. Mills, K.G. Hales, M.T. Fuller, J. Nunnari, and J.M. Shaw. 1998. Mitochondrial fusion in yeast requires the transmembrane GTPase Fzo1p. The Journal of cell biology. 143:359-373.
Higashida, K., S.H. Kim, S.R. Jung, M. Asaka, J.O. Holloszy, and D.H. Han. 2013. Effects of resveratrol and SIRT1 on PGC-1alpha activity and mitochondrial biogenesis: a reevaluation. PLoS biology. 11:e1001603.
Hori, A., M. Yoshida, T. Shibata, and F. Ling. 2009. Reactive oxygen species regulate DNA copy number in isolated yeast mitochondria by triggering recombination-mediated replication. Nucleic acids research. 37:749-761.
Howitz, K.T., K.J. Bitterman, H.Y. Cohen, D.W. Lamming, S. Lavu, J.G. Wood, R.E. Zipkin, P. Chung, A. Kisielewski, L.L. Zhang, B. Scherer, and D.A. Sinclair. 2003. Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature. 425:191-196.
Hughes, A.L., and D.E. Gottschling. 2012. An early age increase in vacuolar pH limits mitochondrial function and lifespan in yeast. Nature. 492:261-265.
Ishii, N. 2007. Role of oxidative stress from mitochondria on aging and cancer. Cornea. 26:S3-9.
Itoh, K., K. Nakamura, M. Iijima, and H. Sesaki. 2013. Mitochondrial dynamics in neurodegeneration. Trends in cell biology. 23:64-71.
Jazwinski, S.M. 1990. Aging and senescence of the budding yeast Saccharomyces cerevisiae. Molecular microbiology. 4:337-343.
Jiang, H., X. Shang, H. Wu, S.C. Gautam, S. Al-Holou, C. Li, J. Kuo, L. Zhang, and M. Chopp. 2009. Resveratrol downregulates PI3K/Akt/mTOR signaling pathways in human U251 glioma cells. Journal of experimental therapeutics & oncology. 8:25-33.
Johnson, S.C., P.S. Rabinovitch, and M. Kaeberlein. 2013. mTOR is a key modulator of ageing and age-related disease. Nature. 493:338-345.
Kaeberlein, M., T. McDonagh, B. Heltweg, J. Hixon, E.A. Westman, S.D. Caldwell, A. Napper, R. Curtis, P.S. DiStefano, S. Fields, A. Bedalov, and B.K. Kennedy. 2005. Substrate-specific activation of sirtuins by resveratrol. The Journal of biological chemistry. 280:17038-17045.
Kelly, D.P., and R.C. Scarpulla. 2004. Transcriptional regulatory circuits controlling mitochondrial biogenesis and function. Genes & development. 18:357-368.
Khan, A., A.N. Aljarbou, Y.H. Aldebasi, S.M. Faisal, and M.A. Khan. 2014. Resveratrol suppresses the proliferation of breast cancer cells by inhibiting fatty acid synthase signaling pathway. Cancer epidemiology. 38:765-772.
Kiraly-Veghely, Z., E. Tyihak, L. Albert, Z.I. Nemeth, and G. Katay. 1998. Identification and measurement of resveratrol and formaldehyde in parts of white and blue grape berries. Acta biologica Hungarica. 49:281-289.
Kjaer, T.N., K. Thorsen, N. Jessen, K. Stenderup, and S.B. Pedersen. 2015. Resveratrol ameliorates imiquimod-induced psoriasis-like skin inflammation in mice. PloS one. 10:e0126599.
Knutson, M.D., and C. Leeuwenburgh. 2008. Resveratrol and novel potent activators of SIRT1: effects on aging and age-related diseases. Nutrition reviews. 66:591-596.
Lagouge, M., C. Argmann, Z. Gerhart-Hines, H. Meziane, C. Lerin, F. Daussin, N. Messadeq, J. Milne, P. Lambert, P. Elliott, B. Geny, M. Laakso, P. Puigserver, and J. Auwerx. 2006. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell. 127:1109-1122.
Langcake, P., and R. Pryce. 1976. The production of resveratrol by Vitis vinifera and other members of the vitaceae as a response to infection or injury. In Physiol Plant Pathol. Vol. 9. 77-86.
Leadsham, J.E., and C.W. Gourlay. 2010. cAMP/PKA signaling balances respiratory activity with mitochondria dependent apoptosis via transcriptional regulation. BMC cell biology. 11:92.
Leonard, S.S., C. Xia, B.H. Jiang, B. Stinefelt, H. Klandorf, G.K. Harris, and X. Shi. 2003. Resveratrol scavenges reactive oxygen species and effects radical-induced cellular responses. Biochemical and biophysical research communications. 309:1017-1026.
Linnane, A.W., H.B. Lukins, P.L. Molloy, P. Nagley, J. Rytka, K.S. Sriprakash, and M.K. Trembath. 1976. Biogenesis of mitochondria: molecular mapping of the mitochondrial genome of yeast. Proceedings of the National Academy of Sciences of the United States of America. 73:2082-2085.
Liu, M., and F. Liu. 2011. Resveratrol inhibits mTOR signaling by targeting DEPTOR. Communicative & integrative biology. 4:382-384.
Londesborough, J., and T.M. Lukkari. 1980. The pH and temperature dependence of the activity of the high Km cyclic nucleotide phosphodiesterase of bakers' yeast. The Journal of biological chemistry. 255:9262-9267.
Ma, P., S. Wera, P.V. Dijck, and J. Thevelein. 1999. The PDE1-encoded low-affinity phosphodiesterase in the yeast Saccharomyces cerevisiae has a specific function in controlling agonist-induced cAMP signaling. Molecular and cellular biology. 10:91-104.
Markus, M.A., and B.J. Morris. 2008. Resveratrol in prevention and treatment of common clinical conditions of aging. Clinical interventions in aging. 3:331-339.
Maurice, D.H., H. Ke, F. Ahmad, Y. Wang, J. Chung, and V.C. Manganiello. 2014. Advances in targeting cyclic nucleotide phosphodiesterases. Nature reviews. Drug discovery. 13:290-314.
Miquel, J., A.C. Economos, J. Fleming, and J.E. Johnson, Jr. 1980. Mitochondrial role in cell aging. Experimental gerontology. 15:575-591.
Mishra, P., and D.C. Chan. 2014. Mitochondrial dynamics and inheritance during cell division, development and disease. Nature reviews. Molecular cell biology. 15:634-646.
Molik, S., R. Lill, and U. Muhlenhoff. 2007. Methods for studying iron metabolism in yeast mitochondria. Methods in cell biology. 80:261-280.
Morselli, E., M.C. Maiuri, M. Markaki, E. Megalou, A. Pasparaki, K. Palikaras, A. Criollo, L. Galluzzi, S.A. Malik, I. Vitale, M. Michaud, F. Madeo, N. Tavernarakis, and G. Kroemer. 2010. Caloric restriction and resveratrol promote longevity through the Sirtuin-1-dependent induction of autophagy. Cell death & disease. 1:e10.
Mortimer, R.K., and J.R. Johnston. 1959. Life span of individual yeast cells. Nature. 183:1751-1752.
Mozdy, A.D., J.M. McCaffery, and J.M. Shaw. 2000. Dnm1p GTPase-mediated mitochondrial fission is a multi-step process requiring the novel integral membrane component Fis1p. The Journal of cell biology. 151:367-380.
Murakami, C., and M. Kaeberlein. 2009. Quantifying yeast chronological life span by outgrowth of aged cells. Journal of visualized experiments : JoVE.
Ni, H.M., J.A. Williams, and W.X. Ding. 2015. Mitochondrial dynamics and mitochondrial quality control. Redox biology. 4:6-13.
Omori, K., and J. Kotera. 2007. Overview of PDEs and their regulation. Circulation research. 100:309-327.
Otsuga, D., B.R. Keegan, E. Brisch, J.W. Thatcher, G.J. Hermann, W. Bleazard, and J.M. Shaw. 1998. The dynamin-related GTPase, Dnm1p, controls mitochondrial morphology in yeast. The Journal of cell biology. 143:333-349.
Page, C.P., and D. Spina. 2011. Phosphodiesterase inhibitors in the treatment of inflammatory diseases. Handbook of experimental pharmacology:391-414.
Park, J.I., C.M. Grant, and I.W. Dawes. 2005. The high-affinity cAMP phosphodiesterase of Saccharomyces cerevisiae is the major determinant of cAMP levels in stationary phase: involvement of different branches of the Ras-cyclic AMP pathway in stress responses. Biochemical and biophysical research communications. 327:311-319.
Park, S.J., F. Ahmad, A. Philp, K. Baar, T. Williams, H. Luo, H. Ke, H. Rehmann, R. Taussig, A.L. Brown, M.K. Kim, M.A. Beaven, A.B. Burgin, V. Manganiello, and J.H. Chung. 2012. Resveratrol ameliorates aging-related metabolic phenotypes by inhibiting cAMP phosphodiesterases. Cell. 148:421-433.
Pereira, C., R.D. Silva, L. Saraiva, B. Johansson, M.J. Sousa, and M. Corte-Real. 2008. Mitochondria-dependent apoptosis in yeast. Biochimica et biophysica acta. 1783:1286-1302.
Ramachandran, V., and P.K. Herman. 2011. Antagonistic interactions between the cAMP-dependent protein kinase and Tor signaling pathways modulate cell growth in Saccharomyces cerevisiae. Genetics. 187:441-454.
Rambold, A.S., B. Kostelecky, N. Elia, and J. Lippincott-Schwartz. 2011. Tubular network formation protects mitochondria from autophagosomal degradation during nutrient starvation. Proceedings of the National Academy of Sciences of the United States of America. 108:10190-10195.
Reinders, A., N. Burckert, T. Boller, A. Wiemken, and C. De Virgilio. 1998. Saccharomyces cerevisiae cAMP-dependent protein kinase controls entry into stationary phase through the Rim15p protein kinase. Genes & development. 12:2943-2955.
Rhie, B.H., Y.H. Song, H.Y. Ryu, and S.H. Ahn. 2013. Cellular aging is associated with increased ubiquitylation of histone H2B in yeast telomeric heterochromatin. Biochemical and biophysical research communications. 439:570-575.
Ringholm, S., J. Olesen, J.T. Pedersen, C.T. Brandt, J.F. Halling, Y. Hellsten, C. Prats, and H. Pilegaard. 2013. Effect of lifelong resveratrol supplementation and exercise training on skeletal muscle oxidative capacity in aging mice; impact of PGC-1alpha. Experimental gerontology. 48:1311-1318.
Rojas, C., B. Pan-Castillo, C. Valls, G. Pujadas, S. Garcia-Vallve, L. Arola, and M. Mulero. 2014. Resveratrol enhances palmitate-induced ER stress and apoptosis in cancer cells. PloS one. 9:e113929.
Sareen, D., P.R. van Ginkel, J.C. Takach, A. Mohiuddin, S.R. Darjatmoko, D.M. Albert, and A.S. Polans. 2006. Mitochondria as the primary target of resveratrol-induced apoptosis in human retinoblastoma cells. Investigative ophthalmology & visual science. 47:3708-3716.
Schett, G., V.S. Sloan, R.M. Stevens, and P. Schafer. 2010. Apremilast: a novel PDE4 inhibitor in the treatment of autoimmune and inflammatory diseases. Therapeutic advances in musculoskeletal disease. 2:271-278.
Seo, A.Y., A.M. Joseph, D. Dutta, J.C. Hwang, J.P. Aris, and C. Leeuwenburgh. 2010. New insights into the role of mitochondria in aging: mitochondrial dynamics and more. Journal of cell science. 123:2533-2542.
Shigenaga, M.K., T.M. Hagen, and B.N. Ames. 1994. Oxidative damage and mitochondrial decay in aging. Proceedings of the National Academy of Sciences of the United States of America. 91:10771-10778.
Shin, S.M., I.J. Cho, and S.G. Kim. 2009. Resveratrol protects mitochondria against oxidative stress through AMP-activated protein kinase-mediated glycogen synthase kinase-3beta inhibition downstream of poly(ADP-ribose)polymerase-LKB1 pathway. Molecular pharmacology. 76:884-895.
Sinclair, D.A., and L. Guarente. 1997. Extrachromosomal rDNA circles--a cause of aging in yeast. Cell. 91:1033-1042.
Sinclair, D.A., K. Mills, and L. Guarente. 1998. Molecular mechanisms of yeast aging. Trends in biochemical sciences. 23:131-134.
Smeal, T., J. Claus, B. Kennedy, F. Cole, and L. Guarente. 1996. Loss of transcriptional silencing causes sterility in old mother cells of S. cerevisiae. Cell. 84:633-642.
Smeitink, J., L. van den Heuvel, and S. DiMauro. 2001. The genetics and pathology of oxidative phosphorylation. Nature reviews. Genetics. 2:342-352.
Smith, C.D., J.M. Carney, P.E. Starke-Reed, C.N. Oliver, E.R. Stadtman, R.A. Floyd, and W.R. Markesbery. 1991. Excess brain protein oxidation and enzyme dysfunction in normal aging and in Alzheimer disease. Proceedings of the National Academy of Sciences of the United States of America. 88:10540-10543.
Soderling, S.H., and J.A. Beavo. 2000. Regulation of cAMP and cGMP signaling: new phosphodiesterases and new functions. Current opinion in cell biology. 12:174-179.
Steffen, K.K., B.K. Kennedy, and M. Kaeberlein. 2009. Measuring replicative life span in the budding yeast. Journal of visualized experiments : JoVE.
Sugioka, R., S. Shimizu, and Y. Tsujimoto. 2004. Fzo1, a protein involved in mitochondrial fusion, inhibits apoptosis. The Journal of biological chemistry. 279:52726-52734.
Suoranta, K., and J. Londesborough. 1984. Purification of intact and nicked forms of a zinc-containing, Mg2+-dependent, low Km cyclic AMP phosphodiesterase from bakers' yeast. The Journal of biological chemistry. 259:6964-6971.
Tamaki, H. 2007. Glucose-stimulated cAMP-protein kinase A pathway in yeast Saccharomyces cerevisiae. Journal of bioscience and bioengineering. 104:245-250.
Tang, B.L. 2010. Resveratrol is neuroprotective because it is not a direct activator of Sirt1-A hypothesis. Brain research bulletin. 81:359-361.
Tennen, R.I., E. Michishita-Kioi, and K.F. Chua. 2012. Finding a target for resveratrol. Cell. 148:387-389.
Thevelein, J.M., and J.H. de Winde. 1999. Novel sensing mechanisms and targets for the cAMP-protein kinase A pathway in the yeast Saccharomyces cerevisiae. Molecular microbiology. 33:904-918.
Timmers, S., M.K. Hesselink, and P. Schrauwen. 2013. Therapeutic potential of resveratrol in obesity and type 2 diabetes: new avenues for health benefits? Annals of the New York Academy of Sciences. 1290:83-89.
Tinhofer, I., D. Bernhard, M. Senfter, G. Anether, M. Loeffler, G. Kroemer, R. Kofler, A. Csordas, and R. Greil. 2001. Resveratrol, a tumor-suppressive compound from grapes, induces apoptosis via a novel mitochondrial pathway controlled by Bcl-2. FASEB journal : official publication of the Federation of American Societies for Experimental Biology. 15:1613-1615.
Toda, T., S. Cameron, P. Sass, M. Zoller, J.D. Scott, B. McMullen, M. Hurwitz, E.G. Krebs, and M. Wigler. 1987a. Cloning and characterization of BCY1, a locus encoding a regulatory subunit of the cyclic AMP-dependent protein kinase in Saccharomyces cerevisiae. Molecular and cellular biology. 7:1371-1377.
Toda, T., S. Cameron, P. Sass, M. Zoller, and M. Wigler. 1987b. Three different genes in S. cerevisiae encode the catalytic subunits of the cAMP-dependent protein kinase. Cell. 50:277-287.
Twig, G., and O.S. Shirihai. 2011. The interplay between mitochondrial dynamics and mitophagy. Antioxidants & redox signaling. 14:1939-1951.
Uno, I., K. Matsumoto, and T. Ishikawa. 1983. Characterization of a cyclic nucleotide phosphodiesterase-deficient mutant in yeast. The Journal of biological chemistry. 258:3539-3542.
van der Bliek, A.M., Q. Shen, and S. Kawajiri. 2013. Mechanisms of mitochondrial fission and fusion. Cold Spring Harbor perspectives in biology. 5.
Veerasamy, M., G.A. Ford, D. Neely, A. Bagnall, G. MacGowan, R. Das, and V. Kunadian. 2014. Association of aging, arterial stiffness, and cardiovascular disease: a review. Cardiology in review. 22:223-232.
Visser, W., E.A. van Spronsen, N. Nanninga, J.T. Pronk, J. Gijs Kuenen, and J.P. van Dijken. 1995. Effects of growth conditions on mitochondrial morphology in Saccharomyces cerevisiae. Antonie van Leeuwenhoek. 67:243-253.
Vollert, S., N. Kaessner, A. Heuser, G. Hanauer, A. Dieckmann, D. Knaack, H.P. Kley, R. Beume, and C. Weiss-Haljiti. 2012. The glucose-lowering effects of the PDE4 inhibitors roflumilast and roflumilast-N-oxide in db/db mice. Diabetologia. 55:2779-2788.
Wang, I.H., H.Y. Chen, Y.H. Wang, K.W. Chang, Y.C. Chen, and C.R. Chang. 2014. Resveratrol modulates mitochondria dynamics in replicative senescent yeast cells. PloS one. 9:e104345.
Weiss, E.L. 2012. Mitotic exit and separation of mother and daughter cells. Genetics. 192:1165-1202.
Westermann, B. 2008. Molecular machinery of mitochondrial fusion and fission. The Journal of biological chemistry. 283:13501-13505.
Westermann, B. 2014. Mitochondrial inheritance in yeast. Biochimica et biophysica acta. 1837:1039-1046.
Wiesner, R.J., G. Zsurka, and W.S. Kunz. 2006. Mitochondrial DNA damage and the aging process: facts and imaginations. Free radical research. 40:1284-1294.
Wolff, S.P., Z.Y. Jiang, and J.V. Hunt. 1991. Protein glycation and oxidative stress in diabetes mellitus and ageing. Free radical biology & medicine. 10:339-352.
Zick, M., S. Duvezin-Caubet, A. Schafer, F. Vogel, W. Neupert, and A.S. Reichert. 2009. Distinct roles of the two isoforms of the dynamin-like GTPase Mgm1 in mitochondrial fusion. FEBS letters. 583:2237-2243.
(此全文限內部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *