帳號:guest(18.225.95.245)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):游濡菁
作者(外文):Yu, Ru-Ching
論文名稱(中文):CG32026基因對果蠅壽命調控及壓力耐受性之研究
論文名稱(外文):The study of CG32026 on Lifespan Regulation and Stress Tolerance in Drosophila
指導教授(中文):汪宏達
指導教授(外文):Wang, Horng Dar
口試委員(中文):陳俊宏
喻秋華
汪宏達
口試委員(外文):Chen, Chun Hong
Yuh, Chiou Hwa
Wang, Horng Dar
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生物科技研究所
學號:102080526
出版年(民國):104
畢業學年度:103
語文別:英文
論文頁數:57
中文關鍵詞:壽命
外文關鍵詞:aging
相關次數:
  • 推薦推薦:0
  • 點閱點閱:24
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
三羧酸循環(Tricarboxylic acid cycle, TCA cycle)是生物體的基礎代謝途徑且同時扮演著調控體內平衡及壽命的重要角色。我們發現NIG9438R-1這株果蠅中CG32026表現有上升此外又有延長壽命的現象,而CG32026便是參與在果蠅TCA cycle中的的重要酵素-異檸檬酸脫氫酶(isocitrate dehydrogenase) 的一種相似基因,它可能可將異檸檬酸(isocitrate)代謝成α酮戊二酸(alpha-ketoglutarate),而已經有報導指出在線蟲中餵給alpha-ketoglutarate,將會藉由抑制雷帕黴素靶蛋白(target of rapamycin, TOR)的路徑去延伸線蟲的壽命,然而並未有研究指出異檸檬酸脫氫酶在果蠅中是否也扮演著調控壽命及壓力耐受性的重要角色,因此在本篇論文,將以果蠅作為模式生物,證實異檸檬酸脫氫酶相似基因不僅可調控壽命,也影響飢餓、氧化性壓力的耐受性,此外,異檸檬酸脫氫酶相似基因CG32026的表現會負調控磷酸化S6激酶的表現,因而表明CG32026可能是藉由TOR的路徑去調控果蠅的壽命及壓力耐受性,總而言之,本篇論文證實了異檸檬酸脫氫酶相似基因CG32026可調控果蠅的壽命及壓力耐受性。
Tricarboxylic acid cycle (TCA cycle) is an essential metabolism pathway and plays an important role in homeostasis and lifespan regulation. We uncovered a mutant fly NIG 9438R-1 which displays extended lifespan and up-regulation of CG32026. CG32026 is predicted as isocitrate dehydrogenase-like gene, which may metabolize isocitrate to alpha-ketoglutarate in TCA cycle. Feeding of alpha-ketoglutarate has been reported to extend lifespan via TOR (target of rapamycin) pathway in C. elegans. It is not reported whether CG32026 plays a role in the regulation of lifespan and stress tolerance in Drosophila. Here, I demonstrated that knockdown of CG32026 (isocitrate dehydrogenase-like gene) might reduce lifespan and modulates starvation and oxidative tolerance in female flies. In addition, the expression of CG32026 negatively modulates the levels of the phosphorylated S6 kinase (p-S6K) in Drosophila, suggesting that the isocitrate dehydrogenase-mediated lifespan and stress tolerance may be involved in TOR pathway. Together, the data indicate that CG62026 isocitrate dehydrogenase-like gene regulates lifespan and stress tolerance in Drosophila.
Abstract i
中文摘要 ii
致謝 iii
Content 1
Introduction 2
Materials and Methods 7
Results 11
Conclusion and Discussion 17
Figures 20
Tables 41
Appendix 53
References 54
1. Amador-Noguez, D., Yagi, K., Venable, S., and Darlington, G. (2004). Gene expression profile of long-lived Ames dwarf mice and Little mice. Aging cell 3, 423-441.
2. Amary, M.F., Bacsi, K., Maggiani, F., Damato, S., Halai, D., Berisha, F., Pollock, R., O'Donnell, P., Grigoriadis, A., Diss, T., et al. (2011). IDH1 and IDH2 mutations are frequent events in central chondrosarcoma and central and periosteal chondromas but not in other mesenchymal tumours. The Journal of pathology 224, 334-343.
3. Apfeld, J., O'Connor, G., McDonagh, T., DiStefano, P.S., and Curtis, R. (2004). The AMP-activated protein kinase AAK-2 links energy levels and insulin-like signals to lifespan in C. elegans. Genes & development 18, 3004-3009.
4. Calabrese, V., Cornelius, C., Cuzzocrea, S., Iavicoli, I., Rizzarelli, E., and Calabrese, E.J. (2011). Hormesis, cellular stress response and vitagenes as critical determinants in aging and longevity. Molecular aspects of medicine 32, 279-304.
5. Cheng, Z., Tsuda, M., Kishita, Y., Sato, Y., and Aigaki, T. (2013). Impaired energy metabolism in a Drosophila model of mitochondrial aconitase deficiency. Biochemical and biophysical research communications 433, 145-150.
6. Chin, R.M., Fu, X., Pai, M.Y., Vergnes, L., Hwang, H., Deng, G., Diep, S., Lomenick, B., Meli, V.S., Monsalve, G.C., et al. (2014a). The metabolite alpha-ketoglutarate extends lifespan by inhibiting ATP synthase and TOR. Nature 510, 397-401.
7. Chin, R.M., Fu, X., Pai, M.Y., Vergnes, L., Hwang, H., Deng, G., Diep, S., Lomenick, B., Meli, V.S., Monsalve, G.C., et al. (2014b). The metabolite alpha-ketoglutarate extends lifespan by inhibiting ATP synthase and TOR. Nature 509, 397-401.
8. Durieux, J., Wolff, S., and Dillin, A. (2011). The cell-non-autonomous nature of electron transport chain-mediated longevity. Cell 144, 79-91.
9. Edwards, C.B., Copes, N., Brito, A.G., Canfield, J., and Bradshaw, P.C. (2013). Malate and fumarate extend lifespan in Caenorhabditis elegans. PloS one 8, e58345.
10. Guarente, L. (2000). Sir2 links chromatin silencing, metabolism, and aging. Genes & development 14, 1021-1026.
11. Guarente, L. (2014). Aging research-where do we stand and where are we going? Cell 159, 15-19.
12. Hardie, D.G. (2007). AMP-activated/SNF1 protein kinases: conserved guardians of cellular energy. Nature reviews Molecular cell biology 8, 774-785.
13. Harman, D. (1965). The Free Radical Theory of Aging: Effect of Age on Serum Copper Levels. Journal of gerontology 20, 151-153.
14. Imai, S., Armstrong, C.M., Kaeberlein, M., and Guarente, L. (2000). Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature 403, 795-800.
15. Kenyon, C.J. (2010). The genetics of ageing. Nature 464, 504-512.
16. Kujoth, G.C., Hiona, A., Pugh, T.D., Someya, S., Panzer, K., Wohlgemuth, S.E., Hofer, T., Seo, A.Y., Sullivan, R., Jobling, W.A., et al. (2005). Mitochondrial DNA mutations, oxidative stress, and apoptosis in mammalian aging. Science 309, 481-484.
17. Lee, S.M., Koh, H.J., Park, D.C., Song, B.J., Huh, T.L., and Park, J.W. (2002). Cytosolic NADP(+)-dependent isocitrate dehydrogenase status modulates oxidative damage to cells. Free radical biology & medicine 32, 1185-1196.
18. Lee, Y.N., Shim, Y.J., Kang, B.H., Park, J.J., and Min, B.H. (2012). Over-expression of human clusterin increases stress resistance and extends lifespan in Drosophila melanogaster. Biochemical and biophysical research communications 420, 851-856.
19. Lopez-Otin, C., Blasco, M.A., Partridge, L., Serrano, M., and Kroemer, G. (2013). The hallmarks of aging. Cell 153, 1194-1217.
20. Mardis, E.R., Ding, L., Dooling, D.J., Larson, D.E., McLellan, M.D., Chen, K., Koboldt, D.C., Fulton, R.S., Delehaunty, K.D., McGrath, S.D., et al. (2009). Recurring mutations found by sequencing an acute myeloid leukemia genome. The New England journal of medicine 361, 1058-1066.
21. McBride, H.M., Neuspiel, M., and Wasiak, S. (2006). Mitochondria: more than just a powerhouse. Current biology : CB 16, R551-560.
22. Mesquita, A., Weinberger, M., Silva, A., Sampaio-Marques, B., Almeida, B., Leao, C., Costa, V., Rodrigues, F., Burhans, W.C., and Ludovico, P. (2010). Caloric restriction or catalase inactivation extends yeast chronological lifespan by inducing H2O2 and superoxide dismutase activity. Proceedings of the National Academy of Sciences of the United States of America 107, 15123-15128.
23. Morselli, E., Maiuri, M.C., Markaki, M., Megalou, E., Pasparaki, A., Palikaras, K., Criollo, A., Galluzzi, L., Malik, S.A., Vitale, I., et al. (2010). Caloric restriction and resveratrol promote longevity through the Sirtuin-1-dependent induction of autophagy. Cell death & disease 1, e10.
24. Mouchiroud, L., Houtkooper, R.H., Moullan, N., Katsyuba, E., Ryu, D., Canto, C., Mottis, A., Jo, Y.S., Viswanathan, M., Schoonjans, K., et al. (2013). The NAD(+)/Sirtuin Pathway Modulates Longevity through Activation of Mitochondrial UPR and FOXO Signaling. Cell 154, 430-441.
25. Ng, F., Wijaya, L., and Tang, B.L. (2015). SIRT1 in the brain-connections with aging-associated disorders and lifespan. Frontiers in cellular neuroscience 9, 64.
26. Parker, S.J., and Metallo, C.M. (2015). Metabolic consequences of oncogenic IDH mutations. Pharmacology & therapeutics 152, 54-62.
27. Perron, J.T., Tyson, R.L., and Sutherland, G.R. (2000). Maintenance of tricarboxylic acid cycle kinetics in Brown-Norway Fischer 344 rats may translate to longevity. Neuroscience letters 281, 91-94.
28. Raffaello, A., and Rizzuto, R. (2011). Mitochondrial longevity pathways. Biochimica et biophysica acta 1813, 260-268.
29. Rubinsztein, D.C., Marino, G., and Kroemer, G. (2011). Autophagy and aging. Cell 146, 682-695.
30. Sackmann-Sala, L., Berryman, D.E., Lubbers, E.R., Vesel, C.B., Troike, K.M., List, E.O., Munn, R.D., Ikeno, Y., and Kopchick, J.J. (2012). Decreased insulin sensitivity and increased oxidative damage in wasting adipose tissue depots of wild-type mice. Age 34, 1225-1237.
31. Salminen, A., Kauppinen, A., Hiltunen, M., and Kaarniranta, K. (2014). Krebs cycle intermediates regulate DNA and histone methylation: epigenetic impact on the aging process. Ageing research reviews 16, 45-65.
32. Sjoblom, T., Jones, S., Wood, L.D., Parsons, D.W., Lin, J., Barber, T.D., Mandelker, D., Leary, R.J., Ptak, J., Silliman, N., et al. (2006). The consensus coding sequences of human breast and colorectal cancers. Science 314, 268-274.
33. Tissenbaum, H.A., and Guarente, L. (2001). Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans. Nature 410, 227-230.
34. Van Raamsdonk, J.M., and Hekimi, S. (2009). Deletion of the mitochondrial superoxide dismutase sod-2 extends lifespan in Caenorhabditis elegans. PLoS genetics 5, e1000361.
35. Wang, J., Jiang, J.C., and Jazwinski, S.M. (2010). Gene regulatory changes in yeast during life extension by nutrient limitation. Experimental gerontology 45, 621-631.
36. Wood, J.G., Rogina, B., Lavu, S., Howitz, K., Helfand, S.L., Tatar, M., and Sinclair, D. (2004). Sirtuin activators mimic caloric restriction and delay ageing in metazoans. Nature 430, 686-689.
37. Zhang, Y., Xie, Y., Berglund, E.D., Coate, K.C., He, T.T., Katafuchi, T., Xiao, G., Potthoff, M.J., Wei, W., Wan, Y., et al. (2012). The starvation hormone, fibroblast growth factor-21, extends lifespan in mice. eLife 1, e00065.
38. Zong, H., Ren, J.M., Young, L.H., Pypaert, M., Mu, J., Birnbaum, M.J., and Shulman, G.I. (2002). AMP kinase is required for mitochondrial biogenesis in skeletal muscle in response to chronic energy deprivation. Proceedings of the National Academy of Sciences of the United States of America 99, 15983-15987.
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *