帳號:guest(18.191.97.124)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林藜瑾
作者(外文):LIN, Li-Jin
論文名稱(中文):ELR-CXC趨化素受體的拮抗劑之設計與特性分析
論文名稱(外文):Design and characterization of an ELR-CXC chemokine receptor antagonist
指導教授(中文):程家維
指導教授(外文):Cheng, Jya‐Wei
口試委員(中文):陳金榜
龍鳳娣
口試委員(外文):Chen, Chin-Pan
Lung, Feng-Di
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生物科技研究所
學號:102080524
出版年(民國):104
畢業學年度:103
語文別:英文
論文頁數:73
中文關鍵詞:介白素 8受體 CXCR1/2ELR-CXC 趨化素發炎
外文關鍵詞:IL-8CXCR1/2CXC chemokineInflammation
相關次數:
  • 推薦推薦:0
  • 點閱點閱:82
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
多型核嗜中性白血球(簡稱嗜中性白血球)的有效活化在宿主的防禦上扮演重要的角色。然而,過度的白血球浸潤會導致組織產生非預期性的傷害進而導致疾病的產生。介白素8是一種ELR-CXC趨化素,透過與細胞上特定的穿膜受體CXCR1與CXCR2結合,進而介導白血球的趨化與活化。在先前的研究中,我們透過對介白素8結構特性的分析,開發了一個高效能ELR‐CXC 趨化素受體拮抗劑,稱為G31P-IP10。此篇研究以G31P-IP10為模板,進行N-loop的胺基酸置換,發展出三個具有潛在ELR‐CXC 趨化素受體拮抗劑活性的G31P-IP10類源物(亦為ELR‐CXC趨化素類源物)。我們檢測了這三個G31P-IP10類源物對介白素8刺激下之嗜中性白血球的抗發炎反應效果,發現其中一個G31P-IP10類源物增強了原先G31P-IP10對於ELR‐CXC趨化素受體的拮抗能力。這個G31P-IP10類源物顯著性地抑制了介白素8所誘導的嗜中性白血球趨化作用,彈性蛋白酶(elastase)的釋放,超氧化物質(ROS)的產生以及基質金屬蛋白酶-9(MMP-9)的分泌。結構上的分析也顯示了其在二級結構上與介白素8和G31P-IP10相比沒有明顯的差異。在未來,此G31P-IP10類源物可望能發展為一個有效的抗發炎藥物治療方法。
Polymorphonuclear neutrophils (PMN) activation is important in human host defense. However, excessive neutrophil infiltration in tissue may cause unexpected tissue damage and development of several diseases. Interlukin-8 (IL-8 or CXCL8), an ELR-CXC chemokine, plays a critical role in neutrophil recruitment and activation through binding to the two seven transmembrane G protein–coupled receptors, CXCR1 and CXCR2. Our previous study has provided a new antagonist, G31P-IP10, for ELR-CXC chemokine receptor based on the structure of IL-8. In this study, we employed G31P-IP10 as a template to further develop three G31P-IP10 analogues by site directed mutagenesis. The results demonstrate that one of the G31P-IP10 analogues displays the greatest anti-inflammatory effect and enhanced the antagonism for IL-8 and its receptors. This G31P-IP10 analogue significantly inhibited IL-8/CXCR1/2 triggered neutrophil chemotaxis, elastase release, reactive oxygen species (ROS) response and matrix metallprotease-9 (MMP-9) secretion. Structure analysis showed that the G31P-IP10 analogue shared the identical secondary structure with IL-8 and G31P-IP10.
This G31P-IP10 analogue provides new opportunities in the development of anti- inflammatory therapeutics.
Content
誌謝 (Acknowledgement) ………………………………………….…………….... l
中文摘要........................................................................................................... II
Abstract ………………………………………………………………….…………. III
Content .......................................................................................................... IV
List of figures ................................................................................................... V
List of tables .................................................................................................. VI
Chapter 1 Introduction ..................................................................................... 1
1.1 Neutrophil infiltration .............................................................................. 1
1.2 ELR-CXC chemokines……...……….…………………………………....... 1
1.3 The ELR-CXC chemokines receptors ………….………………………… 3
1.4 The role of interleukin-8 (IL-8) in acute and chronic inflammation……...4
1.5 The structure of interleukin-8 ……………………………………………… 6
1.6 Design of the ELR-CXC chemokine receptor antagonist....................... 7
Chapter 2 Materials and Methods …………..………………………………….. 10
2.1 Chemicals and reagents ………………………………………………..… 10
2.2 Construction of recombinant expressed plasmids …………………….. 10
2.3 Expression of recombinant proteins .................................................... 12
2.4 Expression and purification of recombinant 15N-labelled proteins ....... 13
2.5 Purification of recombinant proteins .................................................... 14
2.6 Characterization of proteins by mass spectrometry…..……………….. 15
2.7 Polymorphonuclear neutrophils (PMN) isolation .................................. 15
2.8 Polymorphonuclear neutrophils (PMN) chemotaxis assay ................... 16
2.9 Elastase activity.................................................................................... 17
2.10 Reactive Oxygen Species (ROS) response assay ............................. 18
2.11 Matrix metalloproteinase9 (MMP-9) activity by zymographpy……..... 19
2.12 Circular Dichroism (CD) spectroscopy ………………………………… 20
2.13 Nuclear magnetic resonance (NMR) spectroscopy ………………….. 20
2.14 Statistical analysis ……………………………………………………….. 21
Chapter 3 Results .......................................................................................... 22
3.1 Construction of recombinant expressed plasmids................................ 22
3.2 Expression and purification of recombinant proteins ........................... 22
3.3 IP10-T12S may be a potential antagonist for IL-8 receptors ............... 24
3.4 IP10-T12S can significantly inhibit IL-8-induced PMN recruitment and chemotaxis ............................................................................................ 24
3.5 IP10-T12S reduced IL-8 induced neutrophil elastase release in dose- dependent ............................................................................................. 25
3.6 IP10-T12S effectively decreased IL-8 stimulated PMN reactive oxygen species (ROS) response ……………………………………………………26
3.7 IP10-T12S decreased matrix metalloproteinase-9 (MMP-9) release from IL-8 stimulated HL-60 cells …………………………………………………27
3.8 IP10-T12S presents the similar secondary structure as G31P-IP10 and IL-8 ……………………………………………………………………………28
3.9 Heteronuclear Single Quantum Coherence (HSQC) NMR …………….28
Chapter 4 Discussion .................................................................................... 30
Chapter 5 Conclusion .................................................................................... 37
References .................................................................................................... 67
References
1. Nakagawa, H., Ando, Y., Takano, K., and Sunada, Y. (1998) Differential production of chemokines and their role in neutrophil infiltration in rat allergic inflammation. International archives of allergy and immunology 115, 137-143
2. Pallister, I., Dent, C., and Topley, N. (2002) Increased neutrophil migratory activity after major trauma: A factor in the etiology of acute respiratory distress syndrome? Crit Care Med 30, 1717-1721
3. Kobayashi, Y. (2006) Neutrophil infiltration and chemokines. Crit Rev Immunol 26, 307-315
4. Fujiwara, K., Matsukawa, A., Ohkawara, S., Takagi, K., and Yoshinaga, M. (2002) Functional distinction between CXC chemokines, interleukin-8 (IL-8), and growth related oncogene (GRO)alpha in neutrophil infiltration. Lab Invest 82, 15-23
5. Wright, H. L., Moots, R. J., Bucknall, R. C., and Edwards, S. W. (2010) Neutrophil function in inflammation and inflammatory diseases. Rheumatology 49, 1618-1631
6. Graves, D. T., and Jiang, Y. (1995) Chemokines, a Family of Chemotactic Cytokines. Crit Rev Oral Biol M 6, 109-118
7. Baggiolini, M., Dewald, B., and Moser, B. (1997) Human chemokines: an update. Annual review of immunology 15, 675-705
8. Mantovani, A. (1999) The chemokine system: redundancy for robust outputs. Immunology today 20, 254-257
9. Cyster, J. G. (1999) Chemokines and cell migration in secondary lymphoid organs. Science 286, 2098-2102
10. Mackay, C. R. (2001) Chemokines: immunology's high impact factors. Nat Immunol 2, 95-101
11. Bazan, J. F., Bacon, K. B., Hardiman, G., Wang, W., Soo, K., Rossi, D., Greaves, D. R., Zlotnik, A., and Schall, T. J. (1997) A new class of membrane-bound chemokine with a CX3C motif. Nature 385, 640-644
12. Murphy, P. M., Baggiolini, M., Charo, I. F., Hebert, C. A., Horuk, R., Matsushima, K., Miller, L. H., Oppenheim, J. J., and Power, C. A. (2000) International union of pharmacology. XXII. Nomenclature for chemokine receptors. Pharmacological reviews 52, 145-176
13. Strieter, R. M., Polverini, P. J., Kunkel, S. L., Arenberg, D. A., Burdick, M. D., Kasper, J., Dzuiba, J., Vandamme, J., Walz, A., Marriott, D., Chan, S. Y., Roczniak, S., and Shanafelt, A. B. (1995) The Functional-Role of the Elr Motif in Cxc Chemokine-Mediated Angiogenesis. J Biol Chem 270, 27348-27357
14. Clarklewis, I., Schumacher, C., Baggiolini, M., and Moser, B. (1991) Structure-Activity-Relationships of Interleukin-8 Determined Using Chemically Synthesized Analogs - Critical Role of Nh2-Terminal Residues and Evidence for Uncoupling of Neutrophil Chemotaxis, Exocytosis, and Receptor-Binding Activities. J Biol Chem 266, 23128-23134
15. Proudfoot, A. E. I. (2002) Chemokine receptors: Multifaceted therapeutic targets (vol 2, pg 106, 2002). Nat Rev Immunol 2, 215-215
16. Wuyts, A., Proost, P., Lenaerts, J. P., Ben-Baruch, A., Van Damme, J., and Wang, J. M. (1998) Differential usage of the CXC chemokine receptors 1 and 2 by interleukin-8, granulocyte chemotactic protein-2 and epithelial-cell-derived neutrophil attractant-78. European journal of biochemistry / FEBS 255, 67-73
17. Wolf, M., Delgado, M. B., Jones, S. A., Dewald, B., Clark-Lewis, I., and Baggiolini, M. (1998) Granulocyte chemotactic protein 2 acts via both IL-8 receptors, CXCR1 and CXCR2. European journal of immunology 28, 164-170
18. Lee, J., Horuk, R., Rice, G. C., Bennett, G. L., Camerato, T., and Wood, W. I. (1992) Characterization of two high affinity human interleukin-8 receptors. J Biol Chem 267, 16283-16287
19. Chuntharapai, A., Lee, J., Hebert, C. A., and Kim, K. J. (1994) Monoclonal antibodies detect different distribution patterns of IL-8 receptor A and IL-8 receptor B on human peripheral blood leukocytes. J Immunol 153, 5682-5688
20. Jones, S. A., Wolf, M., Qin, S., Mackay, C. R., and Baggiolini, M. (1996) Different functions for the interleukin 8 receptors (IL-8R) of human neutrophil leukocytes: NADPH oxidase and phospholipase D are activated through IL-8R1 but not IL-8R2. Proceedings of the National Academy of Sciences of the United States of America 93, 6682-6686
21. Quan, J. M., Martin, T. R., Rosenberg, G. B., Foster, D. C., Whitmore, T., and Goodman, R. B. (1996) Antibodies against the N-terminus of IL-8 receptor A inhibit neutrophil chemotaxis. Biochemical and biophysical research communications 219, 405-411
22. Hammond, M. E., Lapointe, G. R., Feucht, P. H., Hilt, S., Gallegos, C. A., Gordon, C. A., Giedlin, M. A., Mullenbach, G., and Tekamp-Olson, P. (1995) IL-8 induces neutrophil chemotaxis predominantly via type I IL-8 receptors. J Immunol 155, 1428-1433
23. Horuk, R., Chitnis, C. E., Darbonne, W. C., Colby, T. J., Rybicki, A., Hadley, T. J., and Miller, L. H. (1993) A receptor for the malarial parasite Plasmodium vivax: the erythrocyte chemokine receptor. Science 261, 1182-1184
24. Neote, K., Darbonne, W., Ogez, J., Horuk, R., and Schall, T. J. (1993) Identification of a promiscuous inflammatory peptide receptor on the surface of red blood cells. J Biol Chem 268, 12247-12249
25. Tournamille, C., Blancher, A., Le Van Kim, C., Gane, P., Apoil, P. A., Nakamoto, W., Cartron, J. P., and Colin, Y. (2004) Sequence, evolution and ligand binding properties of mammalian Duffy antigen/receptor for chemokines. Immunogenetics 55, 682-694
26. Moore, B. B., Arenberg, D. A., Addison, C. L., Keane, M. P., Polverini, P. J., and Strieter, R. M. (1998) CXC chemokines mechanism of action in regulating tumor angiogenesis. Angiogenesis 2, 123-134
27. (!!! INVALID CITATION !!!).
28. Harada, A., Sekido, N., Akahoshi, T., Wada, T., Mukaida, N., and Matsushima, K. (1994) Essential involvement of interleukin-8 (IL-8) in acute inflammation. J Leukoc Biol 56, 559-564
29. Walz, A., Meloni, F., Clark-Lewis, I., von Tscharner, V., and Baggiolini, M. (1991) [Ca2+]i changes and respiratory burst in human neutrophils and monocytes induced by NAP-1/interleukin-8, NAP-2, and gro/MGSA. J Leukoc Biol 50, 279-286
30. Mantovani, A., Bonecchi, R., and Locati, M. (2006) Tuning inflammation and immunity by chemokine sequestration: decoys and more. Nat Rev Immunol 6, 907-918
31. Brat, D. J., Bellail, A. C., and Van Meir, E. G. (2005) The role of interleukin-8 and its receptors in gliomagenesis and tumoral angiogenesis. Neuro-oncology 7, 122-133
32. Zemel, D., Krediet, R. T., Koomen, G. C., Kortekaas, W. M., Geertzen, H. G., and ten Berge, R. J. (1994) Interleukin-8 during peritonitis in patients treated with CAPD; an in-vivo model of acute inflammation. Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association 9, 169-174
33. Koch, A. E., Polverini, P. J., Kunkel, S. L., Harlow, L. A., DiPietro, L. A., Elner, V. M., Elner, S. G., and Strieter, R. M. (1992) Interleukin-8 as a macrophage-derived mediator of angiogenesis. Science 258, 1798-1801
34. Donnelly, S. C., Strieter, R. M., Kunkel, S. L., Walz, A., Robertson, C. R., Carter, D. C., Grant, I. S., Pollok, A. J., and Haslett, C. (1993) Interleukin-8 and development of adult respiratory distress syndrome in at-risk patient groups. Lancet 341, 643-647
35. Georganas, C., Liu, H., Perlman, H., Hoffmann, A., Thimmapaya, B., and Pope, R. M. (2000) Regulation of IL-6 and IL-8 expression in rheumatoid arthritis synovial fibroblasts: the dominant role for NF-kappa B but not C/EBP beta or c-Jun. J Immunol 165, 7199-7206
36. Nocker, R. E., Schoonbrood, D. F., van de Graaf, E. A., Hack, C. E., Lutter, R., Jansen, H. M., and Out, T. A. (1996) Interleukin-8 in airway inflammation in patients with asthma and chronic obstructive pulmonary disease. International archives of allergy and immunology 109, 183-191
37. Rajarathnam, K., Sykes, B. D., Dewald, B., Baggiolini, M., and Clark-Lewis, I. (1999) Disulfide bridges in interleukin-8 probed using non-natural disulfide analogues: dissociation of roles in structure from function. Biochemistry 38, 7653-7658
38. Clore, G. M., Appella, E., Yamada, M., Matsushima, K., and Gronenborn, A. M. (1990) Three-Dimensional Structure of Interleukin 8 in Solution. Biochemistry 29, 1689-1696
39. Clark-Lewis, I., Dewald, B., Loetscher, M., Moser, B., and Baggiolini, M. (1994) Structural requirements for interleukin-8 function identified by design of analogs and CXC chemokine hybrids. J Biol Chem 269, 16075-16081
40. Xanthou, G., Williams, T. J., and Pease, J. E. (2003) Molecular characterization of the chemokine receptor CXCR3: evidence for the involvement of distinct extracellular domains in a multi-step model of ligand binding and receptor activation. European journal of immunology 33, 2927-2936
41. Clark-Lewis, I., Schumacher, C., Baggiolini, M., and Moser, B. (1991) Structure-activity relationships of interleukin-8 determined using chemically synthesized analogs. Critical role of NH2-terminal residues and evidence for uncoupling of neutrophil chemotaxis, exocytosis, and receptor binding activities. J Biol Chem 266, 23128-23134
42. Skelton, N. J., Quan, C., Reilly, D., and Lowman, H. (1999) Structure of a CXC chemokine-receptor fragment in complex with interleukin-8. Structure 7, 157-168
43. Moser, B., Dewald, B., Barella, L., Schumacher, C., Baggiolini, M., and Clark-Lewis, I. (1993) Interleukin-8 antagonists generated by N-terminal modification. J Biol Chem 268, 7125-7128
44. Li, F., and Gordon, J. R. (2001) IL-8((3-73))K11R is a high affinity agonist of the neutrophil CXCR1 and CXCR2. Biochemical and biophysical research communications 286, 595-600
45. Schneberger, D., Gordon, J. R., DeVasure, J. M., Boten, J. A., Heires, A. J., Romberger, D. J., and Wyatt, T. A. (2015) CXCR1/CXCR2 antagonist CXCL8(3-74)K11R/G31P blocks lung inflammation in swine barn dust-instilled mice. Pulmonary pharmacology & therapeutics 31, 55-62
46. Wyatt, T. A., Gordon, J. R., DeVasure, J. M., Heires, A. J., Canady, K. J., and Romberger, D. J. (2011) CXCR1/CXCR2 Antagonist CXCL8(3-74)K11R/G31P Blocks Lung Inflammation In Swine Barn Dust-Instilled Mice. Am J Resp Crit Care 183
47. Li, F., Zhang, X. B., and Gordon, J. R. (2002) CXCL8((3-73))K11R/G31P antagonizes ligand binding to the neutrophil CXCR1 and CXCR2 receptors and cellular responses to CXCL8/IL-8. Biochemical and biophysical research communications 293, 939-944
48. Gordon, J. R., and Li, F. (2002) bIL-8(3-73)K11R/G31P antagonizes human neutrophil responses to ELR-CXC chemokines, as well as in vivo bacterial endotoxin (LPS)-induced inflammatory responses in cattle. Faseb J 16, A1079-A1080
49. Joseph, P. R. B., Sarmiento, J. M., Mishra, A. K., Das, S. T., Garofalo, R. P., Navarro, J., and Rajarathnam, K. (2010) Probing the Role of CXC Motif in Chemokine CXCL8 for High Affinity Binding and Activation of CXCR1 and CXCR2 Receptors. J Biol Chem 285, 29262-29269
50. Mehrad, B., Strieter, R. M., Moore, T. A., Tsai, W. C., Lira, S. A., and Standiford, T. J. (1999) CXC chemokine receptor-2 ligands are necessary components of neutrophil-mediated host defense in invasive pulmonary aspergillosis. J Immunol 163, 6086-6094
51. Tsai, W. C., Strieter, R. M., Mehrad, B., Newstead, M. W., Zeng, X. Y., and Standiford, T. J. (2000) CXC chemokine receptor CXCR2 is essential for protective innate host response in murine Pseudomonas aeruginosa pneumonia. Infect Immun 68, 4289-4296
52. Chen, M., Lam, B. K., Kanaoka, Y., Nigrovic, P. A., Audoly, L. P., Austen, K. F., and Lee, D. M. (2006) Neutrophil-derived leukotriene B-4 is required for infl ammatory arthritis. J Exp Med 203, 837-842
53. SIMON A. JONES*, M. W., SHIXIN QINt, CHARLES R. MACKAYt, AND MARCO BAGGIOLINI**. (1996) Different functions for the interleukin 8 receptors (IL-8R) of
human neutrophil leukocytes: NADPH oxidase and phospholipase
D are activated through IL-8R1 but not IL-8R2.
54. Chakrabarti, S., and Patel, K. D. (2005) Regulation of matrix metalloproteinase-9 release from IL-8-stimulated human neutrophils. J Leukocyte Biol 78, 279-288
55. Waugh, D. J. J., and Wilson, C. (2008) The Interleukin-8 Pathway in Cancer. Clin Cancer Res 14, 6735-6741
56. Sotsios, Y., and Ward, S. G. (2000) Phosphoinositide 3-kinase: a key biochemical signal for cell migration in response to chemokines. Immunol Rev 177, 217-235
57. Lee, Y. S., Choi, I., Ning, Y., Kim, N. Y., Khatchadourian, V., Yang, D., Chung, H. K., Choi, D., LaBonte, M. J., Ladner, R. D., Venkata, K. C. N., Rosenberg, D. O., Petasis, N. A., Lenz, H. J., and Hong, Y. K. (2012) Interleukin-8 and its receptor CXCR2 in the tumour microenvironment promote colon cancer growth, progression and metastasis. Brit J Cancer 106, 1833-1841
58. Ravindran, A., Joseph, P. R. B., and Rajarathnam, K. (2009) Structural Basis for Differential Binding of the Interleukin-8 Monomer and Dimer to the CXCR1 N-Domain: Role of Coupled Interactions and Dynamics. Biochemistry 48, 8795-8805
59. Kendrick, A. A., Holliday, M. J., Isern, N. G., Zhang, F., Camilloni, C., Huynh, C., Vendruscolo, M., Armstrong, G., and Eisenmesser, E. Z. (2014) The dynamics of interleukin-8 and its interaction with human CXC receptor I peptide. Protein science : a publication of the Protein Society 23, 464-480
60. Chen, L. Y., Fan, J., Chen, H., Meng, Z. Q., Chen, Z., Wang, P., and Liu, L. M. (2014) The IL-8/CXCR1 axis is associated with cancer stem cell-like properties and correlates with clinical prognosis in human pancreatic cancer cases. Sci Rep-Uk 4
61. Abraham, R. T. (2012) Chemokine to the Rescue: Interleukin-8 Mediates Resistance to PI3K-Pathway-Targeted Therapy in Breast Cancer. Cancer Cell 22, 703-705
62. Liu, X., Peng, J., Sun, W. C., Yang, S. F., Deng, G. Y., Li, F., Cheng, J. W., and Gordon, J. R. (2012) G31P, an Antagonist against CXC Chemokine Receptors 1 and 2, Inhibits Growth of Human Prostate Cancer Cells in Nude Mice. Tohoku J Exp Med 228, 147-156
63. Li, L. Y., Khan, M. N., Li, Q., Chen, X. Y., Wei, J., Wang, B., Cheng, J. W., Gordon, J. R., and Li, F. (2015) G31P, CXCR1/2 inhibitor, with cisplatin inhibits the growth of mice hepatocellular carcinoma and mitigates high-dose cisplatin-induced nephrotoxicity. Oncol Rep 33, 751-757
64. Park, S. H., Das, B. B., Casagrande, F., Tian, Y., Nothnagel, H. J., Chu, M., Kiefer, H., Maier, K., De Angelis, A. A., Marassi, F. M., and Opella, S. J. (2012) Structure of the chemokine receptor CXCR1 in phospholipid bilayers. Nature 491, 779-783
65. Mukaida, N. (2003) Pathophysiological roles of interleukin-8/CXCL8 in pulmonary diseases. Am J Physiol-Lung C 284, L566-L577
66. Gangur, V., Birmingham, N. P., and Thanesvorakul, S. (2002) Chemokines in health and disease. Vet Immunol Immunopathol 86, 127-136
67. Nimmagadda, S. (2012) Differential Expression of Chemokine Receptors and their Roles in Cancer Imaging. Frontiers in oncology 2, 46
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *