帳號:guest(3.143.203.96)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):黃楷婷
作者(外文):Huang, Kai Ting
論文名稱(中文):蛋⽩ ECM 的結構與功能在粒線體膨⼤與聚集化現象所扮演之⾓⾊探討
論文名稱(外文):The Structure and Function of ECM Protein in Mitochondrial Enlargement and Clustering
指導教授(中文):陳俊宏
汪宏達
指導教授(外文):Chen, Chun Hong
Wang, Horng Dar
口試委員(中文):喻秋華
謝興邦
口試委員(外文):Yuh, Chiou Hwa
Hsieh, Hsing-Pang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生物科技研究所
學號:102080521
出版年(民國):104
畢業學年度:103
語文別:英文
論文頁數:79
中文關鍵詞:鐵硫離子蛋白粒線體
外文關鍵詞:ECMmitochondria
相關次數:
  • 推薦推薦:0
  • 點閱點閱:105
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
果蠅ECM蛋白具有鐵硫簇結合結構(CDGSH)的蛋白;在其序列的C端具有一個鐵硫簇結合結構。本研究發現,ECM會朝同一方向地坐落在粒線體上。當在果蠅細胞(S2 cell)與人類細胞(HeLa cell)過量表現時,會造成粒線體有膨大且聚集的現象(Enlarged and Clustering Mitochondria); 藉由其所造成的所造成的現象,所以我們將之命名為ECM。我們先將ECM與老鼠同源蛋白依照其氨基酸序列的相似處與差異處區分出四個結構區域:N端、穿膜蛋白區域、連接區域與鐵硫簇結合區域。在果蠅細胞與人類細胞中進行蛋白結構區域置換時發現,ECM的N端具有造成粒線體膨大與聚集的功能。在人類細胞中,ECM與 小鼠的同源蛋白ECM-MH-1坐落在粒線體上,而另一同源蛋白ECM-MH-2 坐落在內質網。由於ECM-MH-2坐落的位置與其他兩蛋白不同,因此我們將ECM與ECM-MH-1的穿膜蛋白區域取代ECM-MH-2的穿膜蛋白區域,並發現此區域的交換會使ECM-MH-2具有如同ECM造成粒線體膨大與聚集的功能。我們推測ECM與ECM-MH-2的N端結構對於調控粒線體膨大與聚集化現象扮演決定性的角色。在活細胞顯微影像觀察下發現,過量表現ECM確實會促進粒線體聚集,並在最後進行細胞分化; 這表示粒線體的動態變化可能受到細胞週期的調控。大量表現ECM會促使Drp1蛋白轉至到粒線體,且不利粒線體進行動態變化。ECM所造成的這些現象,並不影響與粒線體動態平衡相關蛋白Drp1與Opa1的蛋白表現量。在我們的實驗中也發現,抗糖尿病藥物會減緩ECM所造成的粒線體膨大與聚集現象。然而,ECM究竟是透過哪一機制調控粒線體動態變化仍不得而知。 利用免疫沈澱反應方法,我們找到了Hiw蛋白會與ECM相交互作用。Hiw是一個E3泛素連接酶,此蛋白已被發現與神經生長有關。綜合以上實驗結果,我們得知ECM各結構區域功能、N端結構對於粒線體膨大聚集化有決定性的功能,並找到與ECM可能參與的訊息路徑。這些結果有助於與ECM相關疾病的治療發展,像是老化疾病及糖尿病。
Drosophila ECM is a CDGSH Ion-Sulfur binding domain containing protein that contains a CDGSH in C-terminal region. In this study, ECM is located on mitochondria at same direction. Overexpression of ECM dramatically causes Enlarged and Clustering Mitochondria in Drosophila S2 cell and mammalian HeLa cell so that we named it as ECM. We defined four regions in ECM, ECM-MH-1 and ECM-MH-2 from their similar and different region as N-terminal, transmembrane region, hinge region and CDGSH region. From the domain swap among ECM-MH-1, ECM-MH-2 and ECM, we found N-terminal of ECM is crucial for the mitochondrial enlargement and clustering in Drosophila and mammalian cell. ECM and ECM-MH-1 are located on mitochondria; the ECM-MH-2 is mainly located on ER in HeLa cell. We exchanged its transmembrane of ECM-MH-2 as the counter domain of ECM-MH-1 and ECM, this fusion ECM-MH-2 protein led to target to mitochondria and also trigger mitochondrial phenotype as same from ECM. We propose that N terminal domain of ECM-MH-2 and its Drosophila ortholog ECM has a critical function in the regulation of mitochondrial enlargement and clustering. In the live imaging, ECM promotes mitochondria to aggregate and cluster then cell divided in the end; it suggest this mitochondrial dynamics phenomenon might be regulated by cell cycle. Overexpression of ECM induced Drp1 to trans-locate on mitochondria and made mitochondria dull to dynamic. But this phenotype did not involve protein expression level of opa1 and drp1. We also found that anti-diabetes drug could reduce mitochondrial enlargement and clustering caused by ECM. However, which mechanism ECM is involved is not clear. By ECM-GFP fusion protein pull-down experiment, we found a protein, Hiw, is interacted with ECM by immunoprecipitation and LC/MS. Hiw, which is an ubiquitin E3 ligase, has been reported to be in the regulation of neuron growth. In this thesis, we evaluate which protein region of ECM that regulates the mitochondrial morphology change. With this clear understanding of ECM structure, function and genetic pathway, it might be possible to develop more therapeutic agents in ECM relative diseases, including aging and diabetes.
INTRODUCTION 1
Iron sulfur protein in organism 1
Iron-sulfur domain-containing proteins, Cisd1, Cisd2 and Cisd3 in mammal 1
CG1458: ortholog protein of Cisd1 and Cisd2 in Drosophila 3
The character of mitochondria in organism 4
Mitochondrial morphology and dynamics 4
MITOCHONDRIA AND DISEASE 6
The aims of the thesis 7
MATERIALS AND METHODS 8
Drosophila S2 cell culture 8
Mammalian HeLa cell culture 8
Transfection 9
Immunofluorescence staining 10
Live cell image 11
Purification of mitochondria 11
Western Blot 12
Drosophila genetics and strains 13
Generation of transgenic flies 13
Drosophila muscle dissection and immunofluorescence 14
RESULTS 15
Define four ECM protein regions 15
ECM is a mitochondria-associated protein and regulates the mitochondrial dynamics 15
Overexpression of mCisd1 and of mCisd2 genes have different mitochondrial morphology phenotypes 16
Hinge region of ECM is dispensable for mitochondrial clustering 17
The long form N-terminal region plays an important role in mitochondrial dynamics 18
The transmembrane region of ECM and mCisd1 might contain a novel mitochondrial targeting sequence (MTS) 20
C-terminal CDGSH region of ECM is dispensable for its mitochondrial enlargement and clusters 21
Time lapse dynamic show ECM induced mitochondrial phenotype might be cell cycle dependent 22
The enlarged and clustering mitochondria is dull for dynamic change, and the protein level of Drp1 and Opa1 remain unchanged 22
Anti-diabetic drug Pioglitazone was dose-dependent on partially suppressing mitochondrial fragmentation induced by ECM in S2 cell and HeLa cell 24
Protein HIW might interact with ECM 25
DISCUSSIONS AND CONCLUSIONS 26
REFERENCE 32
FIGURES 37
TABLES 71
Alexander, C., Votruba, M., Pesch, U.E., Thiselton, D.L., Mayer, S., Moore, A., Rodriguez, M., Kellner, U., Leo-Kottler, B., Auburger, G., et al. (2000). OPA1, encoding a dynamin-related GTPase, is mutated in autosomal dominant optic atrophy linked to chromosome 3q28. Nature genetics 26, 211-215.

Amr, S., Heisey, C., Zhang, M., Xia, X.J., Shows, K.H., Ajlouni, K., Pandya, A., Satin, L.S., El-Shanti, H., and Shiang, R. (2007). A homozygous mutation in a novel zinc-finger protein, ERIS, is responsible for Wolfram syndrome 2. American journal of human genetics 81, 673-683.

Antico Arciuch, V.G., Elguero, M.E., Poderoso, J.J., and Carreras, M.C. (2012). Mitochondrial regulation of cell cycle and proliferation. Antioxidants & redox signaling 16, 1150-1180.

Bai, F., Morcos, F., Sohn, Y.S., Darash-Yahana, M., Rezende, C.O., Lipper, C.H., Paddock, M.L., Song, L., Luo, Y., Holt, S.H., et al. (2015). The Fe-S cluster-containing NEET proteins mitoNEET and NAF-1 as chemotherapeutic targets in breast cancer. Proceedings of the National Academy of Sciences of the United States of America 112, 3698-3703.

Chang, N.C., Nguyen, M., and Shore, G.C. (2012). BCL2-CISD2: An ER complex at the nexus of autophagy and calcium homeostasis? Autophagy 8, 856-857.

Chen, H., Chomyn, A., and Chan, D.C. (2005). Disruption of fusion results in mitochondrial heterogeneity and dysfunction. The Journal of biological chemistry 280, 26185-26192.

Chen, H., Detmer, S.A., Ewald, A.J., Griffin, E.E., Fraser, S.E., and Chan, D.C. (2003).
Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development. The Journal of cell biology 160, 189-200.

Chen, Y.F., Kao, C.H., Chen, Y.T., Wang, C.H., Wu, C.Y., Tsai, C.Y., Liu, F.C., Yang, C.W., Wei, Y.H., Hsu, M.T., et al. (2009). Cisd2 deficiency drives premature aging and causes mitochondria-mediated defects in mice. Genes & development 23, 1183-1194.

Colca, J.R., McDonald, W.G., Waldon, D.J., Leone, J.W., Lull, J.M., Bannow, C.A., Lund, E.T., and Mathews, W.R. (2004). Identification of a novel mitochondrial protein ("mitoNEET") cross-linked specifically by a thiazolidinedione photoprobe. American journal of physiology Endocrinology and metabolism 286, E252-260.

Concetta Aloi1., A.S., Lorenzo Pasquali1,2, Francesca Lugani1,3,4, Katia Perri1, Chiara, and Russo1, R.T., Gian Marco Ghiggeri4, Renata Lorini1, Giuseppe d’Annunzio1* (2012). Wolfram Syndrome: New Mutations, Different Phenotype.pdf. PloS one.
Conlan, A.R., Axelrod, H.L., Cohen, A.E., Abresch, E.C., Zuris, J., Yee, D., Nechushtai, R., Jennings, P.A., and Paddock, M.L. (2009). Crystal structure of Miner1: The redox-active 2Fe-2S protein causative in Wolfram Syndrome 2. Journal of molecular biology 392, 143-153.

de Brito, O.M., and Scorrano, L. (2008). Mitofusin 2 tethers endoplasmic reticulum to mitochondria. Nature 456, 605-610.

Delettre, C., Lenaers, G., Griffoin, J.M., Gigarel, N., Lorenzo, C., Belenguer, P., Pelloquin, L., Grosgeorge, J., Turc-Carel, C., Perret, E., et al. (2000). Nuclear gene OPA1, encoding a mitochondrial dynamin-related protein, is mutated in dominant optic atrophy. Nature genetics 26, 207-210.

Detmer, S.A., and Chan, D.C. (2007). Complementation between mouse Mfn1 and Mfn2 protects mitochondrial fusion defects caused by CMT2A disease mutations. The Journal of cell biology 176, 405-414.

Duvezin-Caubet, S., Jagasia, R., Wagener, J., Hofmann, S., Trifunovic, A., Hansson, A., Chomyn, A., Bauer, M.F., Attardi, G., Larsson, N.G., et al. (2006). Proteolytic processing of OPA1 links mitochondrial dysfunction to alterations in mitochondrial morphology. The Journal of biological chemistry 281, 37972-37979.

Gegg, M.E., Cooper, J.M., Chau, K.Y., Rojo, M., Schapira, A.H., and Taanman, J.W. (2010). Mitofusin 1 and mitofusin 2 are ubiquitinated in a PINK1/parkin-dependent manner upon induction of mitophagy. Human molecular genetics 19, 4861-4870.

Goldman, S.J., Taylor, R., Zhang, Y., and Jin, S. (2010). Autophagy and the degradation of mitochondria. Mitochondrion 10, 309-315.

Ingerman, E., Perkins, E.M., Marino, M., Mears, J.A., McCaffery, J.M., Hinshaw, J.E., and Nunnari, J. (2005). Dnm1 forms spirals that are structurally tailored to fit mitochondria. The Journal of cell biology 170, 1021-1027.

Ishihara, N., Fujita, Y., Oka, T., and Mihara, K. (2006). Regulation of mitochondrial morphology through proteolytic cleavage of OPA1. The EMBO journal 25, 2966-2977.
Ishihara, N., Nomura, M., Jofuku, A., Kato, H., Suzuki, S.O., Masuda, K., Otera, H., Nakanishi, Y., Nonaka, I., Goto, Y., et al. (2009). Mitochondrial fission factor Drp1 is essential for embryonic development and synapse formation in mice. Nature cell biology 11, 958-966.

Ishihara, N., Otera, H., Oka, T., and Mihara, K. (2013). Regulation and physiologic functions of GTPases in mitochondrial fusion and fission in mammals. Antioxidants & redox signaling 19, 389-399.

Johnson, D.C., Dean, D.R., Smith, A.D., and Johnson, M.K. (2005). Structure, function, and formation of biological iron-sulfur clusters. Annual review of biochemistry 74, 247-281.
Jones, M.A., Amr, S., Ferebee, A., Huynh, P., Rosenfeld, J.A., Miles, M.F., Davies, A.G., Korey, C.A., Warrick, J.M., Shiang, R., et al. (2014). Genetic studies in Drosophila and humans support a model for the concerted function of CISD2, PPT1 and CLN3 in disease. Biology open 3, 342-352.

Koshiba, T., Detmer, S.A., Kaiser, J.T., Chen, H., McCaffery, J.M., and Chan, D.C. (2004). Structural basis of mitochondrial tethering by mitofusin complexes. Science (New York, NY) 305, 858-862.

Koutsopoulos, O.S., Laine, D., Osellame, L., Chudakov, D.M., Parton, R.G., Frazier, A.E., and Ryan, M.T. (2010). Human Miltons associate with mitochondria and induce microtubule-dependent remodeling of mitochondrial networks. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 1803, 564-574.

Kurland, C.G., and Andersson, S.G. (2000). Origin and evolution of the mitochondrial proteome. Microbiology and molecular biology reviews : MMBR 64, 786-820.
Lee, S., Kim, S., Sun, X., Lee, J.H., and Cho, H. (2007). Cell cycle-dependent mitochondrial biogenesis and dynamics in mammalian cells. Biochemical and biophysical research communications 357, 111-117.

Li, P., Nijhawan, D., Budihardjo, I., Srinivasula, S.M., Ahmad, M., Alnemri, E.S., and Wang, X. (1997). Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91, 479-489.

Lin, J., Zhang, L., Lai, S., and Ye, K. (2011). Structure and molecular evolution of CDGSH iron-sulfur domains. PloS one 6, e24790.

Lin, J., Zhou, T., Ye, K., and Wang, J. (2007). Crystal structure of human mitoNEET reveals distinct groups of iron sulfur proteins. Proceedings of the National Academy of Sciences of the United States of America 104, 14640-14645.

Liu, X., Kim, C.N., Yang, J., Jemmerson, R., and Wang, X. (1996). Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell 86, 147-157.
Martinou, I., Desagher, S., Eskes, R., Antonsson, B., André, E., Fakan, S., and Martinou, J.-C. (1999). The Release of Cytochrome c from Mitochondria during Apoptosis of NGF-deprived Sympathetic Neurons Is a Reversible Event. The Journal of cell biology 144, 883-889.

McBride, H.M., Neuspiel, M., and Wasiak, S. (2006). Mitochondria: more than just a powerhouse. Current biology : CB 16, R551-560.

Meeusen, S., McCaffery, J.M., and Nunnari, J. (2004). Mitochondrial fusion intermediates revealed in vitro. Science (New York, NY) 305, 1747-1752.
Mitra, K., and Lippincott-Schwartz, J. (2010). Analysis of mitochondrial dynamics and functions using imaging approaches. Current protocols in cell biology / editorial board, Juan S Bonifacino [et al] Chapter 4, Unit 4 25 21-21.

Mitra, K., Wunder, C., Roysam, B., Lin, G., and Lippincott-Schwartz, J. (2009). A hyperfused mitochondrial state achieved at G1-S regulates cyclin E buildup and entry into S phase. Proceedings of the National Academy of Sciences of the United States of America 106, 11960-11965.

Mozdy, A.D., McCaffery, J.M., and Shaw, J.M. (2000). Dnm1p Gtpase-Mediated Mitochondrial Fission Is a Multi-Step Process Requiring the Novel Integral Membrane Component Fis1p. The Journal of cell biology 151, 367-380.

Muller, F.L., Liu, Y., and Van Remmen, H. (2004). Complex III releases superoxide to both sides of the inner mitochondrial membrane. The Journal of biological chemistry 279, 49064-49073.

Murphy, Michael P. (2009). How mitochondria produce reactive oxygen species. Biochemical Journal 417, 1-13.

Narendra, D., Tanaka, A., Suen, D.F., and Youle, R.J. (2008). Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. The Journal of cell biology 183, 795-803.

Nguyen, L.K., Munoz-Garcia, J., Maccario, H., Ciechanover, A., Kolch, W., and Kholodenko, B.N. (2011). Switches, excitable responses and oscillations in the Ring1B/Bmi1 ubiquitination system. PLoS computational biology 7, e1002317.
Nunnari, J., and Suomalainen, A. (2012). Mitochondria: in sickness and in health. Cell 148, 1145-1159.

Paddock, M.L., Wiley, S.E., Axelrod, H.L., Cohen, A.E., Roy, M., Abresch, E.C., Capraro, D., Murphy, A.N., Nechushtai, R., Dixon, J.E., et al. (2007). MitoNEET is a uniquely folded 2Fe 2S outer mitochondrial membrane protein stabilized by pioglitazone. Proceedings of the National Academy of Sciences of the United States of America 104, 14342-14347.
Pallanck, L. (2013). Mitophagy: mitofusin recruits a mitochondrial killer. Current biology : CB 23, R570-572.

Parone, P.A., Da Cruz, S., Tondera, D., Mattenberger, Y., James, D.I., Maechler, P., Barja, F., and Martinou, J.-C. (2008). Preventing Mitochondrial Fission Impairs Mitochondrial Function and Leads to Loss of Mitochondrial DNA. PloS one 3, e3257.
Pon, Liza A. (2013). Mitochondrial Fission: Rings around the Organelle. Current Biology 23, R279-R281.

Sakamaki, T., Casimiro, M.C., Ju, X., Quong, A.A., Katiyar, S., Liu, M., Jiao, X., Li, A., Zhang, X., Lu, Y., et al. (2006). Cyclin D1 determines mitochondrial function in vivo. Molecular and cellular biology 26, 5449-5469.

Sheftel, A., Stehling, O., and Lill, R. (2010). Iron-sulfur proteins in health and disease. Trends in endocrinology and metabolism: TEM 21, 302-314.

Smirnova, E., Griparic, L., Shurland, D.L., and van der Bliek, A.M. (2001). Dynamin-related protein Drp1 is required for mitochondrial division in mammalian cells. Molecular biology of the cell 12, 2245-2256.

Sohn, Y.S., Tamir, S., Song, L., Michaeli, D., Matouk, I., Conlan, A.R., Harir, Y., Holt, S.H., Shulaev, V., Paddock, M.L., et al. (2013). NAF-1 and mitoNEET are central to human breast cancer proliferation by maintaining mitochondrial homeostasis and promoting tumor growth. Proceedings of the National Academy of Sciences of the United States of America 110, 14676-14681.

Song, Z., Chen, H., Fiket, M., Alexander, C., and Chan, D.C. (2007). OPA1 processing controls mitochondrial fusion and is regulated by mRNA splicing, membrane potential, and Yme1L. The Journal of cell biology 178, 749-755.

Song, Z., Ghochani, M., McCaffery, J.M., Frey, T.G., and Chan, D.C. (2009). Mitofusins and OPA1 mediate sequential steps in mitochondrial membrane fusion. Molecular biology of the cell 20, 3525-3532.

Tondera, D., Grandemange, S., Jourdain, A., Karbowski, M., Mattenberger, Y., Herzig, S., Da Cruz, S., Clerc, P., Raschke, I., Merkwirth, C., et al. (2009). SLP-2 is required for stress-induced mitochondrial hyperfusion. The EMBO journal 28, 1589-1600.

Wan, H.I., DiAntonio, A., Fetter, R.D., Bergstrom, K., Strauss, R., and Goodman, C.S. (2000). Highwire regulates synaptic growth in Drosophila. Neuron 26, 313-329.

Wang, C.H., Chen, Y.F., Wu, C.Y., Wu, P.C., Huang, Y.L., Kao, C.H., Lin, C.H., Kao, L.S., Tsai, T.F., and Wei, Y.H. (2014). Cisd2 modulates the differentiation and functioning of adipocytes by regulating intracellular Ca2+ homeostasis. Human molecular genetics 23, 4770-4785.

Westermann, B. (2003). Mitochondrial membrane fusion. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 1641, 195-202.

Wiley, S.E., Murphy, A.N., Ross, S.A., van der Geer, P., and Dixon, J.E. (2007). MitoNEET is an iron-containing outer mitochondrial membrane protein that regulates oxidative capacity. Proceedings of the National Academy of Sciences of the United States of America 104, 5318-5323.
Wu, C., Wairkar, Y.P., Collins, C.A., and DiAntonio, A. (2005). Highwire function at the Drosophila neuromuscular junction: spatial, structural, and temporal requirements. The Journal of neuroscience : the official journal of the Society for Neuroscience 25, 9557-9566.

Yang, Y., Atasoy, D., Su, H.H., and Sternson, S.M. (2011). Hunger states switch a flip-flop memory circuit via a synaptic AMPK-dependent positive feedback loop. Cell 146, 992-1003.

Zhivotovsky, B., Orrenius, S., Brustugun, O.T., and Doskeland, S.O. (1998). Injected cytochrome c induces apoptosis. Nature 391, 449-450.

Zuchner, S., Mersiyanova, I.V., Muglia, M., Bissar-Tadmouri, N., Rochelle, J., Dadali, E.L., Zappia, M., Nelis, E., Patitucci, A., Senderek, J., et al. (2004). Mutations in the mitochondrial GTPase mitofusin 2 cause Charcot-Marie-Tooth neuropathy type 2A. Nature genetics 36, 449-451.

Zuris, J.A., Harir, Y., Conlan, A.R., Shvartsman, M., Michaeli, D., Tamir, S., Paddock, M.L., Onuchic, J.N., Mittler, R., Cabantchik, Z.I., et al. (2011). Facile transfer of [2Fe-2S] clusters from the diabetes drug target mitoNEET to an apo-acceptor protein. Proceedings of the National Academy of Sciences of the United States of America 108, 13047-13052.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *