帳號:guest(3.14.252.21)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):蔡忠衡
作者(外文):Tsai, Chung Heng
論文名稱(中文):在果蠅中表現人類 LRRK2 蛋白影響其 SOD2 及氧化壓力
論文名稱(外文):Expression of Human LRRK2 affects mitochondrial superoxide dismutase 2 and oxidative stress in Drosophila
指導教授(中文):張慧雲
指導教授(外文):Chang, Hui Yun
口試委員(中文):桑自剛
汪宏達
口試委員(外文):Sang,Tzu Kang
Wang, Horng Dar
學位類別:碩士
校院名稱:國立清華大學
系所名稱:系統神經科學研究所
學號:102080516
出版年(民國):105
畢業學年度:104
語文別:英文
論文頁數:31
中文關鍵詞:LRRK2超氧化物歧化酶 2氧化壓力果蠅
外文關鍵詞:LRRK2superoxide dismutase 2oxidative stressdrosophila
相關次數:
  • 推薦推薦:0
  • 點閱點閱:26
  • 評分評分:*****
  • 下載下載:4
  • 收藏收藏:0
帕金森氏症是種常見的神經退化性疾病。在偶發性或家族遺傳性帕金森氏症的病 例中,Leucine-rich repeat kinase 2 (LRRK2)的突變是最常被發現的。在近期的研 究中發現到粒線體功能缺失導致氧化壓力增加與帕金森氏症中 DA 神經死亡有 關,而 LRRK2 蛋白與粒線體之功能的關係尚未明白。因此為了去探討 LRRK2 和粒線體之間與帕金森氏症的關係,我們將人類的 LRRK2 蛋白和其突變基因轉 殖在果蠅腦中 DA 相關神經裡去觀察在果蠅腦內過氧化異歧酶(SOD,主要的抗 氧化系統中的酵素)和氧化壓力。在本次的研究中,我們發現到人類 LRRK2 會增 加在粒線體裡的 SOD2 並且會去減少隨著年齡增加的氧化壓力,但其 LRRK2 G2019S 雖然也會增加 SOD2 可是其氧化壓力卻未下降。而在果蠅體內有 LRRK2 的同源基因 dLRRK,我們分析其基因失去功能的突變果蠅並觀察其 SOD 和氧化 壓力,發現到若無 dLRRK 其 SOD2 會減少並增加其氧化壓力。我們也有測試將 表現人類 LRRK2 的果蠅處理不同的環境因子去觀察其 SOD 的改變。此外,過 度磷酸化 Tau 蛋白形成堆積是帕金森氏症病患腦內常見的病理特徵並且過度磷 酸化 Tau 與氧化壓力息息相關,我們將人類 LRRK2 與人類 Tau 同時表現於果蠅 眼睛內去觀察其磷酸化 Tau 的改變。我們發現到 LRRK2 會減少 Tau 的磷酸化, 這可能代表 LRRK2 有拯救 Tau 毒性的功能。由以上結果,我們推測 LRRK2 可 能會去影響粒線體抗氧化壓力機制並扮演著一種保護的功能。
Parkinson disease (PD) is one of the most common neurodegenerative diseases. The genetic mutations in Leucine-rich repeat kinase 2 (LRRK2) have been identified as the most common cause of sporadic and familial PD. Recently, mitochondrial dysfunction has been implicated as the cause of the death of DA neurons in PD. The relationship between human LRRK2 and mitochondrial function is still unknown. Here, we express human wild-type LRRK2 and its mutant G2019S in DA neurons of Drosophila brain and characterize superoxide dismutases (SODs) which is an important mitochondrial antioxidant enzyme. We find that human wild-type LRRK2 affects the level of mitochondrial SOD2 to constrain the age-dependent increase of oxidative stress but its mutation LRRK2 G2019S does not. In contrast, in its loss of function mutants of Drosophila homolog of LRRK2, called dLRRK, we find that it decreases the level of SOD2 and increase oxidative stress. We also characterize the level of SODs in expressing LRRK2 flies under different environmental toxins. Finally, we co-express LRRK2 and Tau in fly eye system. Importantly, wild-type LRRK2 reduces the phosphorylation of Tau. Taken together, it seems that human LRRK2 plays a novel protective role to reduce mitochondrial oxidative stress.
Abstract I
中文摘要 II
Introduction 1
Materials & Methods 4
Result 7
LRRK2 regulates an age-dependent increase of the SODs in Drosophila 7
LRRK2 reduces oxidative stress in older Drosophila 8
Loss-of-function mutant, dLRRKex1/ex1 cause the decrease of SOD2 and the
increase of oxidative stress 9
LRRK2 enhances the increasing of SODs expression induced by chronic environmental toxins 9
LRRK2 decreases the phosphorylation of tau 10
Discussion 12
Figures 15
Reference 27
Alfieri, A., S. Srivastava, R. C. Siow, M. Modo, P. A. Fraser and G. E. Mann (2011). "Targeting the Nrf2-Keap1 antioxidant defence pathway for neurovascular protection in stroke." J Physiol 589(17): 4125-4136.
Angeles, D. C., B. H. Gan, L. Onstead, Y. Zhao, K. L. Lim, J. Dachsel, H. Melrose, M. Farrer, Z. K. Wszolek, D. W. Dickson and E. K. Tan (2011). "Mutations in LRRK2 increase phosphorylation of peroxiredoxin 3 exacerbating oxidative stress-induced neuronal death." Hum Mutat 32(12): 1390-1397.
Angeles, D. C., P. Ho, L. L. Chua, C. Wang, Y. W. Yap, C. Ng, Z. Zhou, K. L. Lim, Z. K. Wszolek, H. Y. Wang and E. K. Tan (2014). "Thiol peroxidases ameliorate LRRK2 mutant-induced mitochondrial and dopaminergic neuronal degeneration in Drosophila." Hum Mol Genet 23(12): 3157-3165.
Bailey, R. M., J. P. Covy, H. L. Melrose, L. Rousseau, R. Watkinson, J. Knight, S. Miles, M. J. Farrer, D. W. Dickson, B. I. Giasson and J. Lewis (2013). "LRRK2 phosphorylates novel tau epitopes and promotes tauopathy." Acta Neuropathol 126(6): 809-827.
Burbach, J. P., S. Smits and M. P. Smidt (2003). "Transcription factors in the development of midbrain dopamine neurons." Ann N Y Acad Sci 991: 61-68.
Chin-Chan, M., J. Navarro-Yepes and B. Quintanilla-Vega (2015). "Environmental pollutants as risk factors for neurodegenerative disorders: Alzheimer and Parkinson diseases." Front Cell Neurosci 9: 124.
Coleman, C. M. and W. S. Neckameyer (2005). "Serotonin synthesis by two distinct enzymes in Drosophila melanogaster." Arch Insect Biochem Physiol 59(1): 12-31.
Cookson, M. R. (2010). "The role of leucine-rich repeat kinase 2 (LRRK2) in Parkinson's disease." Nat Rev Neurosci 11(12): 791-797.
Dachsel, J. C. and M. J. Farrer (2010). "LRRK2 and Parkinson disease." Arch Neurol 67(5): 542-547.
Dalle-Donne, I., R. Rossi, D. Giustarini, A. Milzani and R. Colombo (2003). "Protein carbonyl groups as biomarkers of oxidative stress." Clinica Chimica Acta 329(1-2): 23-38.
Dias, V., E. Junn and M. M. Mouradian (2013). "The role of oxidative stress in Parkinson's disease." J Parkinsons Dis 3(4): 461-491.
Dinkova-Kostova, A. T., L. Baird, K. M. Holmstrom, C. J. Meyer and A. Y. Abramov (2015). "The spatiotemporal regulation of the Keap1-Nrf2 pathway and its importance in cellular bioenergetics." Biochem Soc Trans 43(4): 602-610.
Ernster, L., P. Forsmark and K. Nordenbrand (1992). "The mode of action of lipid-soluble antioxidants in biological membranes. Relationship between the effects of ubiquinol and vitamin E as inhibitors of lipid peroxidation in submitochondrial particles." J Nutr Sci Vitaminol (Tokyo) Spec No: 548-551.
Gaig, C., M. J. Marti, M. Ezquerra, M. J. Rey, A. Cardozo and E. Tolosa (2007). "G2019S LRRK2 mutation causing Parkinson's disease without Lewy bodies." J Neurol Neurosurg Psychiatry 78(6): 626-628.
Halliwell, B. (2006). "Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life." Plant Physiol 141(2): 312-322.
Jennings, P., A. Limonciel, L. Felice and M. O. Leonard (2013). "An overview of transcriptional regulation in response to toxicological insult." Arch Toxicol 87(1): 49-72.
Kachergus, J., I. F. Mata, M. Hulihan, J. P. Taylor, S. Lincoln, J. Aasly, J. M. Gibson, O. A. Ross, T. Lynch, J. Wiley, H. Payami, J. Nutt, D. M. Maraganore, K. Czyzewski, M. Styczynska, Z. K. Wszolek, M. J. Farrer and M. Toft (2005). "Identification of a novel LRRK2 mutation linked to autosomal dominant parkinsonism: evidence of a common founder across European populations." Am J Hum Genet 76(4): 672-680.
Kawakami, F., N. Shimada, E. Ohta, G. Kagiya, R. Kawashima, T. Maekawa, H. Maruyama and T. Ichikawa (2014). "Leucine-rich repeat kinase 2 regulates tau phosphorylation through direct activation of glycogen synthase kinase-3beta." FEBS J 281(1): 3-13.
Lee, S. B., W. Kim, S. Lee and J. Chung (2007). "Loss of LRRK2/PARK8 induces degeneration of dopaminergic neurons in Drosophila." Biochem Biophys Res Commun 358(2): 534-539.
Lin, C. H., H. I. Lin, M. L. Chen, T. T. Lai, L. P. Cao, M. J. Farrer, R. M. Wu and C. T. Chien (2016). "Lovastatin protects neurite degeneration in LRRK2-G2019S parkinsonism through activating the Akt/Nrf pathway and inhibiting GSK3beta activity." Hum Mol Genet.
Malhotra, D., R. Thimmulappa, A. Navas-Acien, A. Sandford, M. Elliott, A. Singh, L. Chen, X. Zhuang, J. Hogg, P. Pare, R. M. Tuder and S. Biswal (2008). "Decline in NRF2-regulated antioxidants in chronic obstructive pulmonary disease lungs due to loss of its positive regulator, DJ-1." Am J Respir Crit Care Med 178(6): 592-604.
Melov, S., P. A. Adlard, K. Morten, F. Johnson, T. R. Golden, D. Hinerfeld, B. Schilling, C. Mavros, C. L. Masters, I. Volitakis, Q. X. Li, K. Laughton, A. Hubbard, R. A. Cherny, B. Gibson and A. I. Bush (2007). "Mitochondrial oxidative stress causes hyperphosphorylation of tau." PLoS One 2(6): e536.
Melov, S., S. R. Doctrow, J. A. Schneider, J. Haberson, M. Patel, P. E. Coskun, K. Huffman, D. C. Wallace and B. Malfroy (2001). "Lifespan extension and rescue of spongiform encephalopathy in superoxide dismutase 2 nullizygous mice treated with superoxide dismutase-catalase mimetics." J Neurosci 21(21): 8348-8353.
Nonn, L., M. Berggren and G. Powis (2003). "Increased expression of mitochondrial peroxiredoxin-3 (thioredoxin peroxidase-2) protects cancer cells against hypoxia and drug-induced hydrogen peroxide-dependent apoptosis." Mol Cancer Res 1(9): 682-689.
Okado-Matsumoto, A. and I. Fridovich (2002). "Amyotrophic lateral sclerosis: a proposed mechanism." Proc Natl Acad Sci U S A 99(13): 9010-9014.
Parkes, T. L., A. J. Elia, D. Dickinson, A. J. Hilliker, J. P. Phillips and G. L. Boulianne (1998). "Extension of Drosophila lifespan by overexpression of human SOD1 in motorneurons." Nat Genet 19(2): 171-174.
Ross, O. A., M. Toft, A. J. Whittle, J. L. Johnson, S. Papapetropoulos, D. C. Mash, I. Litvan, M. F. Gordon, Z. K. Wszolek, M. J. Farrer and D. W. Dickson (2006). "Lrrk2 and Lewy body disease." Ann Neurol 59(2): 388-393.
Satake, W., Y. Nakabayashi, I. Mizuta, Y. Hirota, C. Ito, M. Kubo, T. Kawaguchi, T. Tsunoda, M. Watanabe, A. Takeda, H. Tomiyama, K. Nakashima, K. Hasegawa, F. Obata, T. Yoshikawa, H. Kawakami, S. Sakoda, M. Yamamoto, N. Hattori, M. Murata, Y. Nakamura and T. Toda (2009). "Genome-wide association study identifies common variants at four loci as genetic risk factors for Parkinson's disease." Nat Genet 41(12): 1303-1307.
Shen, J. and M. R. Cookson (2004). "Mitochondria and dopamine: new insights into recessive parkinsonism." Neuron 43(3): 301-304.
Strassburger, M., W. Bloch, S. Sulyok, J. Schuller, A. F. Keist, A. Schmidt, J. Wenk, T. Peters, M. Wlaschek, J. Lenart, T. Krieg, M. Hafner, A. Kumin, S. Werner, W. Muller and K. Scharffetter-Kochanek (2005). "Heterozygous deficiency of manganese superoxide dismutase results in severe lipid peroxidation and spontaneous apoptosis in murine myocardium in vivo." Free Radic Biol Med 38(11): 1458-1470.
Thomas, B. and M. F. Beal (2007). "Parkinson's disease." Hum Mol Genet 16 Spec No. 2: R183-194.
Uttara, B., A. V. Singh, P. Zamboni and R. T. Mahajan (2009). "Oxidative stress and neurodegenerative diseases: a review of upstream and downstream antioxidant therapeutic options." Curr Neuropharmacol 7(1): 65-74.
Yao, Z. and N. W. Wood (2009). "Cell death pathways in Parkinson's disease: role of mitochondria." Antioxid Redox Signal 11(9): 2135-2149.
Zimprich, A., S. Biskup, P. Leitner, P. Lichtner, M. Farrer, S. Lincoln, J. Kachergus, M. Hulihan, R. J. Uitti, D. B. Calne, A. J. Stoessl, R. F. Pfeiffer, N. Patenge, I. C. Carbajal, P. Vieregge, F. Asmus, B. Muller-Myhsok, D. W. Dickson, T. Meitinger, T. M. Strom, Z. K. Wszolek and T. Gasser (2004). "Mutations in LRRK2 cause autosomal-dominant parkinsonism with pleomorphic pathology." Neuron 44(4): 601-607.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *