帳號:guest(3.21.93.14)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):楊佳欣
作者(外文):Yang, Jia shin
論文名稱(中文):人類第一酵素複合體NDUFS7次單元蛋白受c-Src 磷酸化之研究
論文名稱(外文):Phosphorylation of Human NADH dehydrogenase (ubiquinone) Fe-S protein 7 (NDUFS7) by c-Src
指導教授(中文):高茂傑
指導教授(外文):Kao, Mou Chieh
口試委員(中文):林立元
張壯榮
學位類別:碩士
校院名稱:國立清華大學
系所名稱:分子醫學研究所
學號:102080512
出版年(民國):104
畢業學年度:103
語文別:英文
論文頁數:80
中文關鍵詞:磷酸化
外文關鍵詞:NDUFS7phosphorylationc-Src
相關次數:
  • 推薦推薦:0
  • 點閱點閱:280
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
NADH dehydrogenase (ubiquinone) Fe-S protein 7 (NDUFS7) 是細胞粒線體第一酵素複合體中一個中心次單元蛋白,在物種演化中具有高度保留性。研究指出NDUFS7參與氧化磷酸化(OXPHOS)反應,其功能為該酵素複合體中電子傳遞的最後電子接受者。我們先前的研究發現mitochondrial targeting sequence (MTS)位於NDUFS7的N端,除了MTS我們也發現兩段特別的序列位於NDUFS7的C端,分別為nuclear localization signal (NLS)和nuclear export signal (NES),這些結果顯示NDUFS7除了被運送進入粒線體之外,還會被運送到細胞核中,但關於調控NDUFS7在不同胞器間的轉移機制依舊是未知的。先前研究指出NDUFS7缺乏與萊氏症候群(Leigh syndrome)或是一些神經疾病是相關的。因此了解NDUFS7在細胞中的分佈機制或是調控功能是一個重要的課題。
近年來研究發現磷酸化修飾(phosphorylation modification)很有可能在調控蛋白分佈及功能上扮演一個重要的角色,而在此篇研究中,主要集中探討磷酸化對於NDUFS7所造成的影響。我們首先在HEK 293細胞中大量表現NDUFS7蛋白,接著以西方點墨的方式分析細胞NDUFS7蛋白上的磷酸化修飾。我們的結果顯示NDUFS7的前驅蛋白所含的酪胺酸會被磷酸化,而透過ATP的刺激可以促使磷酸化的訊號增強。我們也用了軟體預測發現NDUFS7可能是c-Src kinase的受質之一,因此我們在細胞中共同表現NDUFS7和c-Src kinase,結果顯示c-Src kinase可以結合NDUFS7,並且這樣的結合可以增加NDUFS7的磷酸化強度。然而c-Src作用於NDUFS7的磷酸化修飾並不會影響到NDUFS7在細胞中的分布情況或是本身蛋白在第一酵素複合體中的活性。另外我們也確認了NDUFS7第160個位置上的酪胺酸是c-Src kinase主要修飾的位置。此外,我們也發現這個位點的磷酸化修飾對於NDUFS7的蛋白穩定性有顯著影響。接下來的實驗必須進一步探討NDUFS7磷酸化修飾的確切目的,或是其可能調控粒線體的功能。
Human NADH dehydrogenase (ubiquinone) Fe-S protein 7 (NDUFS7), participating in the process of oxidative phosphorylation (OXPHOS), is one of the most conserved core subunits of mitochondrial complex I. In addition to containing a mitochondrial targeting sequence (MTS), a functional nuclear localization signal (NLS) and a nuclear export signal (NES) are both demonstrated to be present in NDUFS7. Deficiency of NDUFS7 is associated with Leigh syndrome (LS) and patients suffering from this disease develop movement disorders and other serious complications. Thus, clearing out the controlling mechanism of NDUFS7 subcellular distribution and its functions at the molecular level is important. Previous studies conducted in our laboratory indicated that NDUFS7 could be located in mitochondria, the cytosol and the nucleus. However, the mechanism of regulating its localization is still unknown. Post–translational modifications are well recognized as the candidates for controlling protein localization and functions. The main purpose of this project is to study the influence of phosphorylation on the subcellular localization of NDUFS7 and/or its involvement in the regulation of NDUFS7 functions. The current results showed that the precursor form of NDUFS7 is phosphorylated at tyrosine residues and enhanced by ATP treatment. In addition, the tyrosine phosphorylation of NDUFS7 could be enhanced by c-Src kinase both in vivo and in vitro. However, the subcellular localization of NDUFS7 is not significantly affected by the expression of c-Src as compared to that of the control groups. Moreover, one of the sites involved in the phosphorylation of NDUFS7 is identified to be tyrosine-160, and the stability of NDUFS7 protein is positively regulated by phosphorylation at this residue. Further studies are on the way to explore the effect of NDUFS7 phosphorylation on mitochondrial functions.
摘要 1
Abstract 3
Abbreviations 6
Introduction 8
1. Mitochondrion, complex I and NDUFS7 8
2. Regulation of protein nucleo-cytoplasmic transport 14
3. Protein Phosphorylation 16
4. Phosphorylation and mitochondria 21
The objective of this study 25
Materials and methods 26
Result 34
1. Evolutionary conservation of iron-sulfur cluster binding domain 34
2. NDUFS7 was tyrosine-phosphorylated in vivo 34
3. The tyrosine phosphorylation of NDUFS7 could be enhanced by ATP treatment 35
4. c-Src interacted with NDUFS7 in vivo 36
5. c-Src phosphorylated NDUFS7 in vivo and in vitro 37
6. The tyrosine-phosphorylated NDUFS7 was mainly present in mitochondria 38
7. Tyrosine-160 was the major site for NDUFS7 phosphorylation by c-Src 39
8. Phosphorylation of NDUFS7 by c-Src did not alter its subcellular localization 40
9. Phosphorylation of NDUFS7 by c-Src did not alter complex I activity 41
10. Tyrosine-160 mutation affected protein stability of NDUFS7 in the presence of c-Src 41
Discussion 43
1. The motif of c-Src phosphorylation and multiple tyrosine phosphorylation sites on NDUFS7? 44
2. Cross-talk between NDUFS7 phosphorylation and SUMOylation 45
3. The biological significance of NDUFS7 phosphorylation 47
Table 50
Figures 51
Reference 66
Appendixes 74
1. McBride, H. M., Neuspiel, M., and Wasiak, S. (2006) Mitochondria: more than just a powerhouse, Current biology : CB 16, R551-560.
2. Sherratt, H. S. (1991) Mitochondria: structure and function, Revue neurologique 147, 417-430.
3. Scheffler, I. E. (2001) Mitochondria make a come back, Advanced drug delivery reviews 49, 3-26.
4. Wikstrom, M. (1984) Pumping of protons from the mitochondrial matrix by cytochrome oxidase, Nature 308, 558-560.
5. Ogawa, S., and Lee, T. M. (1984) The relation between the internal phosphorylation potential and the proton motive force in mitochondria during ATP synthesis and hydrolysis, The Journal of biological chemistry 259, 10004-10011.
6. Smeitink, J., van den Heuvel, L., and DiMauro, S. (2001) The genetics and pathology of oxidative phosphorylation, Nature reviews. Genetics 2, 342-352.
7. Stojanovski, D., Johnston, A. J., Streimann, I., Hoogenraad, N. J., and Ryan, M. T. (2003) Import of nuclear-encoded proteins into mitochondria, Experimental physiology 88, 57-64.
8. Hirst, J., Carroll, J., Fearnley, I. M., Shannon, R. J., and Walker, J. E. (2003) The nuclear encoded subunits of complex I from bovine heart mitochondria, Biochimica et biophysica acta 1604, 135-150.
9. Hirst, J. (2013) Mitochondrial complex I, Annual review of biochemistry 82, 551-575.
10. Ohnishi, T. (1998) Iron-sulfur clusters/semiquinones in complex I, Biochimica et biophysica acta 1364, 186-206.
11. Hinchliffe, P., and Sazanov, L. A. (2005) Organization of iron-sulfur clusters in respiratory complex I, Science 309, 771-774.
12. Murphy, M. P. (2009) How mitochondria produce reactive oxygen species, The Biochemical journal 417, 1-13.
13. Hyslop, S. J., Duncan, A. M., Pitkanen, S., and Robinson, B. H. (1996) Assignment of the PSST subunit gene of human mitochondrial complex I to chromosome 19p13, Genomics 37, 375-380.
14. Baradaran, R., Berrisford, J. M., Minhas, G. S., and Sazanov, L. A. (2013) Crystal structure of the entire respiratory complex I, Nature 494, 443-448.
15. Duarte, M., Populo, H., Videira, A., Friedrich, T., and Schulte, U. (2002) Disruption of iron-sulphur cluster N2 from NADH: ubiquinone oxidoreductase by site-directed mutagenesis, The Biochemical journal 364, 833-839.
16. Duarte, M., Schulte, U., Ushakova, A. V., and Videira, A. (2005) Neurospora strains harboring mitochondrial disease-associated mutations in iron-sulfur subunits of complex I, Genetics 171, 91-99.
17. Copeland, J. M., Cho, J., Lo, T., Jr., Hur, J. H., Bahadorani, S., Arabyan, T., Rabie, J., Soh, J., and Walker, D. W. (2009) Extension of Drosophila life span by RNAi of the mitochondrial respiratory chain, Current biology : CB 19, 1591-1598.
18. Distelmaier, F., Koopman, W. J., van den Heuvel, L. P., Rodenburg, R. J., Mayatepek, E., Willems, P. H., and Smeitink, J. A. (2009) Mitochondrial complex I deficiency: from organelle dysfunction to clinical disease, Brain : a journal of neurology 132, 833-842.
19. Schapira, A. H. (2006) Mitochondrial disease, Lancet 368, 70-82.
20. Jaokar, T. M., R., S., and Suresh, C. G. (2013) Structural Effects of Leigh Syndrome Mutations on the Function of Human Mitochondrial Complex-I Q module, Biochem Physiol S2.
21. Lebon, S., Rodriguez, D., Bridoux, D., Zerrad, A., Rotig, A., Munnich, A., Legrand, A., and Slama, A. (2007) A novel mutation in the human complex I NDUFS7 subunit associated with Leigh syndrome, Molecular genetics and metabolism 90, 379-382.
22. Lebon, S., Minai, L., Chretien, D., Corcos, J., Serre, V., Kadhom, N., Steffann, J., Pauchard, J. Y., Munnich, A., Bonnefont, J. P., and Rotig, A. (2007) A novel mutation of the NDUFS7 gene leads to activation of a cryptic exon and impaired assembly of mitochondrial complex I in a patient with Leigh syndrome, Molecular genetics and metabolism 92, 104-108.
23. Esiri, M. M., and Wilcock, G. K. (1986) Cerebral amyloid angiopathy in dementia and old age, Journal of neurology, neurosurgery, and psychiatry 49, 1221-1226.
24. Yan, S. D., Fu, J., Soto, C., Chen, X., Zhu, H., Al-Mohanna, F., Collison, K., Zhu, A., Stern, E., Saido, T., Tohyama, M., Ogawa, S., Roher, A., and Stern, D. (1997) An intracellular protein that binds amyloid-beta peptide and mediates neurotoxicity in Alzheimer's disease, Nature 389, 689-695.
25. Vassar, R., Bennett, B. D., Babu-Khan, S., Kahn, S., Mendiaz, E. A., Denis, P., Teplow, D. B., Ross, S., Amarante, P., Loeloff, R., Luo, Y., Fisher, S., Fuller, J., Edenson, S., Lile, J., Jarosinski, M. A., Biere, A. L., Curran, E., Burgess, T., Louis, J. C., Collins, F., Treanor, J., Rogers, G., and Citron, M. (1999) Beta-secretase cleavage of Alzheimer's amyloid precursor protein by the transmembrane aspartic protease BACE, Science 286, 735-741.
26. Frykman, S., Teranishi, Y., Hur, J. Y., Sandebring, A., Yamamoto, N. G., Ancarcrona, M., Nishimura, T., Winblad, B., Bogdanovic, N., Schedin-Weiss, S., Kihara, T., and Tjernberg, L. O. (2012) Identification of two novel synaptic gamma-secretase associated proteins that affect amyloid beta-peptide levels without altering Notch processing, Neurochemistry international 61, 108-118.
27. Chou, T. F. (2009) Human mitochondrial complex I NDUFS7 subunit has a dual distribution both in mitochondria and nuclei, Master Thesis, National Tshing Hua University.
28. Terry, L. J., Shows, E. B., and Wente, S. R. (2007) Crossing the nuclear envelope: hierarchical regulation of nucleocytoplasmic transport, Science 318, 1412-1416.
29. Jans, D. A., Xiao, C. Y., and Lam, M. H. (2000) Nuclear targeting signal recognition: a key control point in nuclear transport?, BioEssays : news and reviews in molecular, cellular and developmental biology 22, 532-544.
30. Nardozzi, J. D., Lott, K., and Cingolani, G. (2010) Phosphorylation meets nuclear import: a review, Cell communication and signaling : CCS 8, 32.
31. Mao, C., Ozer, Z., Zhou, M., and Uckun, F. M. (1999) X-Ray structure of glycerol kinase complexed with an ATP analog implies a novel mechanism for the ATP-dependent glycerol phosphorylation by glycerol kinase, Biochemical and biophysical research communications 259, 640-644.
32. Cole, P. A., Shen, K., Qiao, Y., and Wang, D. (2003) Protein tyrosine kinases Src and Csk: a tail's tale, Current opinion in chemical biology 7, 580-585.
33. Babior, B. M. (1999) NADPH oxidase: an update, Blood 93, 1464-1476.
34. Deutscher, J., and Saier, M. H., Jr. (2005) Ser/Thr/Tyr protein phosphorylation in bacteria - for long time neglected, now well established, Journal of molecular microbiology and biotechnology 9, 125-131.
35. Ciesla, J., Fraczyk, T., and Rode, W. (2011) Phosphorylation of basic amino acid residues in proteins: important but easily missed, Acta biochimica Polonica 58, 137-148.
36. Guan, K. L., and Butch, E. (1995) Isolation and characterization of a novel dual specific phosphatase, HVH2, which selectively dephosphorylates the mitogen-activated protein kinase, J Biol Chem 270, 7197-7203.
37. Mellgren, R. L., Slaughter, G. R., and Thomas, J. A. (1977) Dephosphorylation of phosphoproteins by Escherichia coli alkaline phosphatase, J Biol Chem 252, 6082-6089.
38. MacKintosh, C., Coggins, J., and Cohen, P. (1991) Plant protein phosphatases. Subcellular distribution, detection of protein phosphatase 2C and identification of protein phosphatase 2A as the major quinate dehydrogenase phosphatase, The Biochemical journal 273 ( Pt 3), 733-738.
39. Gatica, M., Hinrichs, M. V., Jedlicki, A., Allende, C. C., and Allende, J. E. (1993) Effect of metal ions on the activity of casein kinase II from Xenopus laevis, Febs Lett 315, 173-177.
40. Hunter, T. (1991) Protein kinase classification, Methods in enzymology 200, 3-37.
41. Nishizuka, Y. (1984) The role of protein kinase C in cell surface signal transduction and tumour promotion, Nature 308, 693-698.
42. Schnaper, H. W. (1998) Cell signal transduction through the mitogen-activated protein kinase pathway, Pediatric nephrology 12, 790-795.
43. Obata, K., Yamanaka, H., Dai, Y., Mizushima, T., Fukuoka, T., Tokunaga, A., and Noguchi, K. (2004) Activation of extracellular signal-regulated protein kinase in the dorsal root ganglion following inflammation near the nerve cell body, Neuroscience 126, 1011-1021.
44. Brown, M. T., and Cooper, J. A. (1996) Regulation, substrates and functions of src, Biochimica et biophysica acta 1287, 121-149.
45. Gao, J., Zoller, K. E., Ginsberg, M. H., Brugge, J. S., and Shattil, S. J. (1997) Regulation of the pp72syk protein tyrosine kinase by platelet integrin alpha IIb beta 3, The EMBO journal 16, 6414-6425.
46. Cance, W. G., Craven, R. J., Bergman, M., Xu, L., Alitalo, K., and Liu, E. T. (1994) Rak, a novel nuclear tyrosine kinase expressed in epithelial cells, Cell growth & differentiation : the molecular biology journal of the American Association for Cancer Research 5, 1347-1355.
47. Moarefi, I., LaFevre-Bernt, M., Sicheri, F., Huse, M., Lee, C. H., Kuriyan, J., and Miller, W. T. (1997) Activation of the Src-family tyrosine kinase Hck by SH3 domain displacement, Nature 385, 650-653.
48. Okada, M., Nada, S., Yamanashi, Y., Yamamoto, T., and Nakagawa, H. (1991) CSK: a protein-tyrosine kinase involved in regulation of src family kinases, The Journal of biological chemistry 266, 24249-24252.
49. Cartwright, C. A., Eckhart, W., Simon, S., and Kaplan, P. L. (1987) Cell transformation by pp60c-src mutated in the carboxy-terminal regulatory domain, Cell 49, 83-91.
50. Reynolds, A. B., Vila, J., Lansing, T. J., Potts, W. M., Weber, M. J., and Parsons, J. T. (1987) Activation of the oncogenic potential of the avian cellular src protein by specific structural alteration of the carboxy terminus, The EMBO journal 6, 2359-2364.
51. Superti-Furga, G., and Courtneidge, S. A. (1995) Structure-function relationships in Src family and related protein tyrosine kinases, BioEssays : news and reviews in molecular, cellular and developmental biology 17, 321-330.
52. Reynolds, A. B., Kanner, S. B., Wang, H. C., and Parsons, J. T. (1989) Stable association of activated pp60src with two tyrosine-phosphorylated cellular proteins, Molecular and cellular biology 9, 3951-3958.
53. Brandvold, K. R., Steffey, M. E., Fox, C. C., and Soellner, M. B. (2012) Development of a highly selective c-Src kinase inhibitor, ACS chemical biology 7, 1393-1398.
54. Salvi, M., Brunati, A. M., Bordin, L., La Rocca, N., Clari, G., and Toninello, A. (2002) Characterization and location of Src-dependent tyrosine phosphorylation in rat brain mitochondria, Biochimica et biophysica acta 1589, 181-195.
55. Valente, E. M., Abou-Sleiman, P. M., Caputo, V., Muqit, M. M., Harvey, K., Gispert, S., Ali, Z., Del Turco, D., Bentivoglio, A. R., Healy, D. G., Albanese, A., Nussbaum, R., Gonzalez-Maldonado, R., Deller, T., Salvi, S., Cortelli, P., Gilks, W. P., Latchman, D. S., Harvey, R. J., Dallapiccola, B., Auburger, G., and Wood, N. W. (2004) Hereditary early-onset Parkinson's disease caused by mutations in PINK1, Science 304, 1158-1160.
56. Miyazaki, T., Neff, L., Tanaka, S., Horne, W. C., and Baron, R. (2003) Regulation of cytochrome c oxidase activity by c-Src in osteoclasts, The Journal of cell biology 160, 709-718.
57. Miyazaki, T., Tanaka, S., Sanjay, A., and Baron, R. (2006) The role of c-Src kinase in the regulation of osteoclast function, Modern rheumatology / the Japan Rheumatism Association 16, 68-74.
58. Tibaldi, E., Brunati, A. M., Massimino, M. L., Stringaro, A., Colone, M., Agostinelli, E., Arancia, G., and Toninello, A. (2008) Src-Tyrosine kinases are major agents in mitochondrial tyrosine phosphorylation, Journal of cellular biochemistry 104, 840-849.
59. Augereau, O., Claverol, S., Boudes, N., Basurko, M. J., Bonneu, M., Rossignol, R., Mazat, J. P., Letellier, T., and Dachary-Prigent, J. (2005) Identification of tyrosine-phosphorylated proteins of the mitochondrial oxidative phosphorylation machinery, Cellular and molecular life sciences : CMLS 62, 1478-1488.
60. Hebert Chatelain, E., Dupuy, J. W., Letellier, T., and Dachary-Prigent, J. (2011) Functional impact of PTP1B-mediated Src regulation on oxidative phosphorylation in rat brain mitochondria, Cellular and molecular life sciences : CMLS 68, 2603-2613.
61. Ogura, M., Yamaki, J., Homma, M. K., and Homma, Y. (2012) Mitochondrial c-Src regulates cell survival through phosphorylation of respiratory chain components, The Biochemical journal 447, 281-289.
62. Hebert-Chatelain, E., Jose, C., Gutierrez Cortes, N., Dupuy, J. W., Rocher, C., Dachary-Prigent, J., and Letellier, T. (2012) Preservation of NADH ubiquinone-oxidoreductase activity by Src kinase-mediated phosphorylation of NDUFB10, Biochimica et biophysica acta 1817, 718-725.
63. Uckun, F. M., Tuel-Ahlgren, L., Waddick, K. G., Jun, X., Jin, J., Myers, D. E., Rowley, R. B., Burkhardt, A. L., and Bolen, J. B. (1996) Physical and functional interactions between Lyn and p34cdc2 kinases in irradiated human B-cell precursors, The Journal of biological chemistry 271, 6389-6397.
64. Qin, S., Minami, Y., Kurosaki, T., and Yamamura, H. (1997) Distinctive functions of Syk and Lyn in mediating osmotic stress- and ultraviolet C irradiation-induced apoptosis in chicken B cells, The Journal of biological chemistry 272, 17994-17999.
65. Belka, C., Marini, P., Lepple-Wienhues, A., Budach, W., Jekle, A., Los, M., Lang, F., Schulze-Osthoff, K., Gulbins, E., and Bamberg, M. (1999) The tyrosine kinase lck is required for CD95-independent caspase-8 activation and apoptosis in response to ionizing radiation, Oncogene 18, 4983-4992.
66. Samraj, A. K., Stroh, C., Fischer, U., and Schulze-Osthoff, K. (2006) The tyrosine kinase Lck is a positive regulator of the mitochondrial apoptosis pathway by controlling Bak expression, Oncogene 25, 186-197.
67. Lluis, J. M., Buricchi, F., Chiarugi, P., Morales, A., and Fernandez-Checa, J. C. (2007) Dual role of mitochondrial reactive oxygen species in hypoxia signaling: activation of nuclear factor-{kappa}B via c-SRC and oxidant-dependent cell death, Cancer research 67, 7368-7377.
68. Schmidt, H., Siems, W., Muller, M., Dumdey, R., and Rapoport, S. M. (1991) ATP-producing and consuming processes of Ehrlich mouse ascites tumor cells in proliferating and resting phases, Experimental cell research 194, 122-127.
69. Ishizawar, R., and Parsons, S. J. (2004) c-Src and cooperating partners in human cancer, Cancer cell 6, 209-214.
70. Sato, H., Sato, M., Kanai, H., Uchiyama, T., Iso, T., Ohyama, Y., Sakamoto, H., Tamura, J., Nagai, R., and Kurabayashi, M. (2005) Mitochondrial reactive oxygen species and c-Src play a critical role in hypoxic response in vascular smooth muscle cells, Cardiovascular research 67, 714-722.
71. Guarino, M. (2010) Src signaling in cancer invasion, Journal of cellular physiology 223, 14-26.
72. Arachiche, A., Augereau, O., Decossas, M., Pertuiset, C., Gontier, E., Letellier, T., and Dachary-Prigent, J. (2008) Localization of PTP-1B, SHP-2, and Src exclusively in rat brain mitochondria and functional consequences, The Journal of biological chemistry 283, 24406-24411.
73. Salvi, M., Morrice, N. A., Brunati, A. M., and Toninello, A. (2007) Identification of the flavoprotein of succinate dehydrogenase and aconitase as in vitro mitochondrial substrates of Fgr tyrosine kinase, FEBS letters 581, 5579-5585.
74. Ubersax, J. A., and Ferrell, J. E., Jr. (2007) Mechanisms of specificity in protein phosphorylation, Nature reviews. Molecular cell biology 8, 530-541.
75. Songyang, Z., Carraway, K. L., 3rd, Eck, M. J., Harrison, S. C., Feldman, R. A., Mohammadi, M., Schlessinger, J., Hubbard, S. R., Smith, D. P., Eng, C., and et al. (1995) Catalytic specificity of protein-tyrosine kinases is critical for selective signalling, Nature 373, 536-539.
76. Fu, Y., Yang, G., Zhu, F., Peng, C., Li, W., Li, H., Kim, H. G., Bode, A. M., Dong, Z., and Dong, Z. (2014) Antioxidants decrease the apoptotic effect of 5-Fu in colon cancer by regulating Src-dependent caspase-7 phosphorylation, Cell death & disease 5, e983.
77. Wimmer, P., Blanchette, P., Schreiner, S., Ching, W., Groitl, P., Berscheminski, J., Branton, P. E., Will, H., and Dobner, T. (2013) Cross-talk between phosphorylation and SUMOylation regulates transforming activities of an adenoviral oncoprotein, Oncogene 32, 1626-1637.
78. Guo, Z., Kanjanapangka, J., Liu, N., Liu, S., Liu, C., Wu, Z., Wang, Y., Loh, T., Kowolik, C., Jamsen, J., Zhou, M., Truong, K., Chen, Y., Zheng, L., and Shen, B. (2012) Sequential posttranslational modifications program FEN1 degradation during cell-cycle progression, Molecular cell 47, 444-456.
79. Yao, Q., Liu, B. Q., Li, H., McGarrigle, D., Xing, B. W., Zhou, M. T., Wang, Z., Zhang, J. J., Huang, X. Y., and Guo, L. (2014) C-terminal Src kinase (Csk)-mediated phosphorylation of eukaryotic elongation factor 2 (eEF2) promotes proteolytic cleavage and nuclear translocation of eEF2, The Journal of biological chemistry 289, 12666-12678.
80. Dadke, S., Cotteret, S., Yip, S. C., Jaffer, Z. M., Haj, F., Ivanov, A., Rauscher, F., 3rd, Shuai, K., Ng, T., Neel, B. G., and Chernoff, J. (2007) Regulation of protein tyrosine phosphatase 1B by sumoylation, Nature cell biology 9, 80-85.
81. Hietakangas, V., Anckar, J., Blomster, H. A., Fujimoto, M., Palvimo, J. J., Nakai, A., and Sistonen, L. (2006) PDSM, a motif for phosphorylation-dependent SUMO modification, Proceedings of the National Academy of Sciences of the United States of America 103, 45-50.
82. Papa, S., De Rasmo, D., Scacco, S., Signorile, A., Technikova-Dobrova, Z., Palmisano, G., Sardanelli, A. M., Papa, F., Panelli, D., Scaringi, R., and Santeramo, A. (2008) Mammalian complex I: a regulable and vulnerable pacemaker in mitochondrial respiratory function, Biochimica et biophysica acta 1777, 719-728.
83. De Rasmo, D., Panelli, D., Sardanelli, A. M., and Papa, S. (2008) cAMP-dependent protein kinase regulates the mitochondrial import of the nuclear encoded NDUFS4 subunit of complex I, Cellular signalling 20, 989-997.
84. Robin, M. A., Anandatheerthavarada, H. K., Biswas, G., Sepuri, N. B., Gordon, D. M., Pain, D., and Avadhani, N. G. (2002) Bimodal targeting of microsomal CYP2E1 to mitochondria through activation of an N-terminal chimeric signal by cAMP-mediated phosphorylation, The Journal of biological chemistry 277, 40583-40593.
85. Robin, M. A., Prabu, S. K., Raza, H., Anandatheerthavarada, H. K., and Avadhani, N. G. (2003) Phosphorylation enhances mitochondrial targeting of GSTA4-4 through increased affinity for binding to cytoplasmic Hsp70, The Journal of biological chemistry 278, 18960-18970.
86. Cesaro, L., and Salvi, M. (2010) Mitochondrial tyrosine phosphoproteome: new insights from an up-to-date analysis, BioFactors 36, 437-450.
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

1. Study on allotopic expression of recoded human mitochondrial ND4L genes in mammalian cells
2. 探討人類粒線體第一蛋白質複合體ND3次單元之同素異位基因表現
3. 胃幽門螺旋桿菌26695菌株之D型阿拉伯糖-5-磷酸異構酶由HP1429基因所表現之特性研究
4. Studies on the import into mitochondria of the human ND4L subunit by reengineered nuclear genes
5. 人類粒線體第一蛋白質複合體中NDUFS7次單元擁有粒線體與細胞核兩種不同的分佈
6. 研究粒線體酵素複合體I中NDUFV2次單元的功能及其粒線體標的訊號
7. 胃幽門螺旋桿菌26695菌株之ADP-L-glycero-D-manno-heptose-6-epimerase由HP0859基因所表現之特性研究
8. Characterization and identification of Helicobacter pylori 26695 phosphopantetheine adenylyltransferase encoded by hp1475
9. 利用異位及異種表現的方式探討衣藻細胞核版粒線體呼吸鏈相關基因在人類細胞中之表現
10. 粒線體NDUFS8次單元功能分析及其粒線體標的訊號之研究
11. The functional study of NADH dehydrogenase (ubiquinone) flavoprotein 2 (NDUFV2) subunit and its iron-sulfur cluster in human mitochondrial complex I under oxidative stress
12. 胃幽門螺旋桿菌26695菌株之phosphoheptose isomerase由 hp0857基因所表現之特性研究
13. 胃幽門桿菌HP0860基因缺失對脂多醣生合成的影響
14. 人類粒線體酵素複合體I的NDUFS8次單元蛋白質及其鐵硫中心之功能研究
15. 人類粒線體第一蛋白質複合體中NDUFS7次單元的功能研究
 
* *