帳號:guest(18.224.32.112)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳秀沛
作者(外文):Chen, Siou Pei
論文名稱(中文):人類及老鼠趨化因子CCL5在結構上的共通性
論文名稱(外文):The structure commonality between human and mouse CCL5
指導教授(中文):蘇士哲
指導教授(外文):Sue, Shih-Che
口試委員(中文):黃介嶸
王子豪
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生物資訊與結構生物研究所
學號:102080507
出版年(民國):104
畢業學年度:103
語文別:中文英文
論文頁數:73
中文關鍵詞:趨化因子
外文關鍵詞:Chemokine
相關次數:
  • 推薦推薦:0
  • 點閱點閱:241
  • 評分評分:*****
  • 下載下載:10
  • 收藏收藏:0
趨化因子(chemokine),也稱做趨化激素,是屬於細胞因子家族的其中一員的小分子蛋白,具有趨化免疫細胞到發炎組織周圍的能力。CCL5(又稱 RANTES)是一個重要的趨化因子,會誘發白血球附著及移轉位置至發炎部位。CCL5與許多重要的疾病有關,而CCL5在臨床上或細胞上的研究大多以老鼠做為一個重要的動物模型,因此我們的目標是確認老鼠CCL5與人類CCL5兩者間的相似性,證明老鼠CCL5可以利用老鼠模型進行各項在人體試驗前的研究。老鼠CCL5與人類CCL5胺基酸序列上十分相似,然而老鼠CCL5尚未有任何結構資訊且尚未與人類CCL5做比較。因此我們建立CCL5在兩個跨物種之間的比較。首先,我們利用大腸桿菌做為表現系統,成功建立改良的方法純化老鼠CCL5。接著我們確認老鼠CCL5的結構特性並和人類CCL5比較。利用核磁共振實驗結果發現老鼠和人類CCL5具有相似的二級結構分布,同時地,影響人類CCL5多聚體形成的重要氨基酸E66突變成Serine後在老鼠模型中也具有相同的影響。這個研究改良CCL5的純化與製備方式並且建立老鼠CCL5的結構用以在老鼠模型中藥物的測試及人體試驗前的研究。
Chemokines are a family of small cytokines, also called chemotactic cytokines. Chemokines have the ability to induce chemotaxis for immune cells. CCL5 (also known as RANTES) is an important chemokine that demonstrates a feature to induce leukocytes adhesion and transmigration in the site of inflammation. CCL5 plays an important role in many proinflammatory diseases. Most of the trials of CCL5 uses mouse as the model to conduct clinical or cell tests. Thus, we aim to understand if mouse CCL5 (mCCL5) is suitable to mimic human CCL5 (hCCL5) in the mouse model. mCCL5 contains sequence similar to hCCL5. However, there is no information related to mCCL5 structure, even no structural comparison between the two chemokines. Therefore, we established the comparison between the two cross-species CCL5s. Firstly, using E. coli as the expression system, we established an improved method for mCCL5 preparation. Subsequently, we determined structural property of mCCL5 and compared to hCCL5. By using NMR method, human and mouse CCL5 share similar secondary structural elements and meanwhile, oligomerization behavior that the residue E66 involved in hCCL5 self-aggregation also involved in mCCL5 aggregation. Thus, this research confirms mCCL5 and mouse model can be a good system for testing drug candidates in prior of human trials. The established method also benefits for rodent CCL5 production in the future.
Content
ABSTRACT 1
中文摘要 2
CONTENT 3
ABBREVIATIONS 5
CHAPTER 1 6
1.1 Chemokine 6
1.2 CCL5 (RANTES) 7
1.3 CCL5 is associated with a wide range of immune-mediated diseases 8
1.3.1 CCL5 and atherosclerosis 8
1.3.2 CCL5 and HIV-1 9
1.4 Methionylated CCL5 (Met-CCL5) 10
1.5 Oligomeric state of human CCL5 11
1.5.1 Monomer 11
1.5.2 Dimer 12
1.5.3 High-order oligomer 13
1.6 Aims of research 14
CHAPTER 2 20
2.1 Cloning constructs of recombinant mCCL5 20
2.2 Point mutation of mCCL5 to E66S-mCCL5 20
2.3 Strategies for expression and purification of mCCL5 22
2.4 Expression and purification of E66S-mouse CCL5 24
2.5 Cloning constructs of recombinant Met-mCCL5 24
2.6 Point mutation of Met-mCCL5 to Met-E66S-mCCL5 25
2.7 Strategies for expression and purification of Met-mCCL5 26
2.8 Expression and purification of Met-E66S-mCCL5 27
2.9 15N labeled and 15N, 13C labeled protein for a series of NMR experiments 27
CHAPTER 3 38
3.1 human CCL5 NMR structures 38
3.2 Met-mCCL5 for structural investigation by NMR 39
3.3 NMR 1H-15N HSQC for studying a protein 39
3.3.1 Temperature-dependency 1H-15N HSQC of Met-mCCL5 39
3.3.2 pH-dependency 1H-15N HSQC of Met-mCCL5 40
3.3.3 Salt-dependency of 1H-15N HSQC of Met-mCCL5 41
3.4 Backbone assignment of Met-mCCL5 41
3.5 Backbone assignment of Met-E66S-mCCL5 42
3.6 The chemical shift variations of Met-mCCL5 and Met-E66S-mCCL5 43
3.7 Comparison of secondary structure prediction between Met-mCCL5 and Met-E66S 44
3.8 Met-mCCL5 assignment compares with Met-hCCL5 assignment 44
3.9 Dihedral angle prediction of Met-mCCL5 by TALOS+ 45
3.10 NMR assignments and structure determination 46
3.10.1 NMR 3D side chain experiments 47
3.10.2 NMR 3D NOESY experiments 47
CHAPTER 4 64
4.1 Biological test of mCCL5 and Met-mCCL5 64
4.2 Size-determination of MetmCCL5 and Met-E66S-mCCL5 64
CHAPTER 5 65
5.1 The two strategies improved CCL5 protein quality and yield 67
5.2 Human and mouse CCL5 share similar structural properties 68
5.3 Human and mouse CCL5 share similar aggregation properties 68
5.4 Structure determination of CCL5 69
REFERENCES 71

References
1. Frederick, M. J., and Clayman, G. L. (2001) Chemokines in cancer. Expert reviews in molecular medicine 3, 1-18
2. Blanpain, C., Doranz, B. J., Bondue, A., Govaerts, C., De Leener, A., Vassart, G., Doms, R. W., Proudfoot, A., and Parmentier, M. (2003) The core domain of chemokines binds CCR5 extracellular domains while their amino terminus interacts with the transmembrane helix bundle. Journal of Biological Chemistry 278, 5179-5187
3. Carlson, J., Baxter, S. A., Dréau, D., and Nesmelova, I. V. (2013) The heterodimerization of platelet-derived chemokines. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics 1834, 158-168
4. Schwarz, M. K., and Wells, T. N. (2002) New therapeutics that modulate chemokine networks. Nature Reviews Drug Discovery 1, 347-358
5. Wang, X., Watson, C., Sharp, J. S., Handel, T. M., and Prestegard, J. H. (2011) Oligomeric structure of the chemokine CCL5/RANTES from NMR, MS, and SAXS data. Structure 19, 1138-1148
6. Wang, X., Sharp, J. S., Handel, T. M., and Prestegard, J. H. (2013) Chemokine oligomerization in cell signaling and migration. Progress in molecular biology and translational science 117, 531
7. Wiktor, M., Hartley, O., and Grzesiek, S. (2013) Characterization of Structure, Dynamics, and Detergent Interactions of the Anti-HIV Chemokine Variant 5P12-RANTES. Biophysical journal 105, 2586-2597
8. Kuschert, G. S., Coulin, F., Power, C. A., Proudfoot, A. E., Hubbard, R. E., Hoogewerf, A. J., and Wells, T. N. (1999) Glycosaminoglycans interact selectively with chemokines and modulate receptor binding and cellular responses. Biochemistry 38, 12959-12968
9. Proudfoot, A. E. (2006) The biological relevance of chemokine-proteoglycan interactions. Biochemical Society Transactions 34, 422
10. Koenen, R. R., and Weber, C. (2010) Therapeutic targeting of chemokine interactions in atherosclerosis. Nature reviews Drug discovery 9, 141-153
11. Proudfoot, A. E., Fritchley, S., Borlat, F., Shaw, J. P., Vilbois, F., Zwahlen, C., Trkola, A., Marchant, D., Clapham, P. R., and Wells, T. N. (2001) The BBXB motif of RANTES is the principal site for heparin binding and controls receptor selectivity. Journal of Biological Chemistry 276, 10620-10626
12. Martin, L., Blanpain, C., Garnier, P., Wittamer, V., Parmentier, M., and Vita, C. (2001) Structural and functional analysis of the RANTES-glycosaminoglycans interactions. Biochemistry 40, 6303-6318
13. Schröder, J.-M. (1995) Cytokine networks in the skin. Journal of investigative dermatology 105, 20S-24S
14. Niwa, Y., Akamatsu, H., Niwa, H., Sumi, H., Ozaki, Y., and Abe, A. (2001) Correlation of tissue and plasma RANTES levels with disease course in patients with breast or cervical cancer. Clinical Cancer Research 7, 285-289
15. Terada, N., Maesako, K.-i., Hamano, N., Houki, G., Ikeda, T., Sai, M., Yamashita, T., Fukuda, S., Wakita, A., and Yoshimura, K. (1997) Eosinophil adhesion regulates RANTES production in nasal epithelial cells. The Journal of Immunology 158, 5464-5470
16. Appay, V., Brown, A., Cribbes, S., Randle, E., and Czaplewski, L. G. (1999) Aggregation of RANTES Is Responsible for Its Inflammatory Properties CHARACTERIZATION OF NONAGGREGATING, NONINFLAMMATORY RANTES MUTANTS. Journal of Biological Chemistry 274, 27505-27512
17. Arnaud, C., Beguin, P. C., Lantuejoul, S., Pepin, J.-L., Guillermet, C., Pelli, G., Burger, F., Buatois, V., Ribuot, C., and Baguet, J.-P. (2011) The inflammatory preatherosclerotic remodeling induced by intermittent hypoxia is attenuated by RANTES/CCL5 inhibition. American journal of respiratory and critical care medicine 184, 724-731
18. Gerard, C., and Rollins, B. J. (2001) Chemokines and disease. Nat Immunol 2, 108-115
19. Wang, N. X., Sieg, S. F., Lederman, M. M., Offord, R. E., Hartley, O., and von Recum, H. A. (2013) Using glycosaminoglycan/chemokine interactions for the long-term delivery of 5P12-RANTES in HIV prevention. Molecular pharmaceutics 10, 3564-3573
20. Roscic-Mrkic, B., Fischer, M., Leemann, C., Manrique, A., Gordon, C. J., Moore, J. P., Proudfoot, A. E., and Trkola, A. (2003) RANTES (CCL5) uses the proteoglycan CD44 as an auxiliary receptor to mediate cellular activation signals and HIV-1 enhancement. Blood 102, 1169-1177
21. Zernecke, A., Shagdarsuren, E., and Weber, C. (2008) Chemokines in atherosclerosis an update. Arteriosclerosis, thrombosis, and vascular biology 28, 1897-1908
22. Lievens, D., and von Hundelshausen, P. (2011) Platelets in atherosclerosis. Thromb Haemost 106, 827-838
23. Koenen, R. R., von Hundelshausen, P., Nesmelova, I. V., Zernecke, A., Liehn, E. A., Sarabi, A., Kramp, B. K., Piccinini, A. M., Paludan, S. R., and Kowalska, M. A. (2009) Disrupting functional interactions between platelet chemokines inhibits atherosclerosis in hyperlipidemic mice. Nature medicine 15, 97-103
24. von Hundelshausen, P., Weber, K. S., Huo, Y., Proudfoot, A. E., Nelson, P. J., Ley, K., and Weber, C. (2001) RANTES deposition by platelets triggers monocyte arrest on inflamed and atherosclerotic endothelium. Circulation 103, 1772-1777
25. Hu, D. J., Dondero, T. J., Rayfield, M. A., George, J. R., Schochetman, G., Jaffe, H. W., Luo, C.-C., Kalish, M. L., Weniger, B. G., and Pau, C.-P. (1996) The emerging genetic diversity of HIV: the importance of global surveillance for diagnostics, research, and prevention. Jama 275, 210-216
26. Liu, H., Chao, D., Nakayama, E. E., Taguchi, H., Goto, M., Xin, X., Takamatsu, J.-k., Saito, H., Ishikawa, Y., and Akaza, T. (1999) Polymorphism in RANTES chemokine promoter affects HIV-1 disease progression. Proceedings of the National Academy of Sciences 96, 4581-4585
27. (!!! INVALID CITATION !!!).
28. Proudfoot, A. E., Power, C. A., Hoogewerf, A. J., Montjovent, M.-O., Borlat, F., Offord, R. E., and Wells, T. N. (1996) Extension of recombinant human RANTES by the retention of the initiating methionine produces a potent antagonist. Journal of Biological Chemistry 271, 2599-2603
29. Veillard, N. R., Kwak, B., Pelli, G., Mulhaupt, F., James, R. W., Proudfoot, A. E., and Mach, F. (2004) Antagonism of RANTES receptors reduces atherosclerotic plaque formation in mice. Circulation research 94, 253-261
30. Proudfoot, A. E., Buser, R., Borlat, F., Alouani, S., Soler, D., Offord, R. E., Schröder, J.-M., Power, C. A., and Wells, T. N. (1999) Amino-terminally modified RANTES analogues demonstrate differential effects on RANTES receptors. Journal of Biological Chemistry 274, 32478-32485
31. Solari, R., Offord, R. E., Remy, S., Aubry, J.-P., Wells, T. N., Whitehorn, E., Oung, T., and Proudfoot, A. E. (1997) Receptor-mediated endocytosis of CC-chemokines. Journal of Biological Chemistry 272, 9617-9620
32. Plater-Zyberk, C., Hoogewerf, A. J., Proudfoot, A. E., Power, C. A., and Wells, T. N. (1997) Effect of a CC chemokine receptor antagonist on collagen induced arthritis in DBA/1 mice. Immunology letters 57, 117-120
33. Gröne, H., Weber, C., Weber, K., Gröne, E., Klier, C., Wells, T., Proudfoot, A., Schlöndorff, D., and Nelson, P. (1998) [Reduction of acute kidney transplantation rejection by the chemokine receptor antagonist Met-RANTES]. Verhandlungen der Deutschen Gesellschaft fur Pathologie 83, 205-211
34. Lloyd, C. M., Minto, A. W., Dorf, M. E., Proudfoot, A., Wells, T. N., Salant, D. J., and Gutierrez-Ramos, J.-C. (1997) RANTES and monocyte chemoattractant protein–1 (MCP-1) play an important role in the inflammatory phase of crescentic nephritis, but only MCP-1 is involved in crescent formation and interstitial fibrosis. The Journal of experimental medicine 185, 1371-1380
35. Liou, J.-T., Mao, C.-C., Sum, D. C.-W., Liu, F.-C., Lai, Y.-S., Li, J.-C., and Day, Y.-J. (2013) Peritoneal administration of Met-RANTES attenuates inflammatory and nociceptive responses in a murine neuropathic pain model. The Journal of Pain 14, 24-35
36. Huang, Y., Jiao, S., Tao, X., Tang, Q., Jiao, W., Xiao, J., Xu, X., Zhang, Y., Liang, G., and Wang, H. (2014) Met-CCL5 represents an immunotherapy strategy to ameliorate rabies virus infection. Journal of neuroinflammation 11, 1-13
37. Duma, L., Häussinger, D., Rogowski, M., Lusso, P., and Grzesiek, S. (2007) Recognition of RANTES by extracellular parts of the CCR5 receptor. Journal of molecular biology 365, 1063-1075
38. Czaplewski, L. G., McKeating, J., Craven, C. J., Higgins, L. D., Appay, V., Brown, A., Dudgeon, T., Howard, L. A., Meyers, T., and Owen, J. (1999) Identification of Amino Acid Residues Critical for Aggregation of Human CC Chemokines Macrophage Inflammatory Protein (MIP)-1α, MIP-1β, and RANTES CHARACTERIZATION OF ACTIVE DISAGGREGATED CHEMOKINE VARIANTS. Journal of Biological Chemistry 274, 16077-16084
39. Skelton, N. J., Aspiras, F., Ogez, J., and Schall, T. J. (1995) Proton NMR assignments and solution conformation of RANTES, a chemokine of the CC type. Biochemistry 34, 5329-5342
40. Chung, C.-W., Cooke, R. M., Proudfoot, A. E., and Wells, T. N. (1995) The three-dimensional solution structure of RANTES. Biochemistry 34, 9307-9314
41. Shaw, J. P., Johnson, Z., Borlat, F., Zwahlen, C., Kungl, A., Roulin, K., Harrenga, A., Wells, T. N., and Proudfoot, A. E. (2004) The X-ray structure of RANTES: heparin-derived disaccharides allows the rational design of chemokine inhibitors. Structure 12, 2081-2093
42. Berjanskii, M. V., and Wishart, D. S. (2005) A simple method to predict protein flexibility using secondary chemical shifts. Journal of the American Chemical Society 127, 14970-14971

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *