帳號:guest(18.225.175.174)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳巧婷
作者(外文):Chen,Ciao Ting
論文名稱(中文):Molecular analysis on traumatic brain injury induced epileptic seizure in zebrafish
論文名稱(外文):利用分子層次的分析探討斑馬魚腦創傷誘發癲癇發作的機制
指導教授(中文):莊永仁
指導教授(外文):Chuang,Yung-Jen
口試委員(中文):王文德
吳長益
口試委員(外文):Wang,Wen-Der
Wu,Chang-Yi
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生物資訊與結構生物研究所
學號:102080503
出版年(民國):104
畢業學年度:103
語文別:中文英文
論文頁數:53
中文關鍵詞:腦創傷癲癇斑馬魚
外文關鍵詞:TBIEpileptic seizuresZebrafish
相關次數:
  • 推薦推薦:0
  • 點閱點閱:37
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
「癲癇」屬於神經疾病的一種,當中樞神經系統出現異常的神經元活性時,會異常的放電導致自發性的激起抽蓄。造成癲癇發作的病因相當的複雜,包括化學誘導、腦傷與遺傳因子等,這些多樣的病因也使得癲癇的分析變得相對困難。因為缺乏對於癲癇發作相關機制的了解,想預判癲癇的發生目前仍然不可能。先前我們實驗室的研究發現腦創傷的斑馬魚游動的途徑與戊四氮(PTZ)誘使斑馬魚癲癇發作時的游動模式相似。此外斑馬魚腦創傷後各癲癇相關基因表現的趨勢也有顯著的變化。因此我們假設腦創傷後的斑馬魚可能會導致癲癇,同時探討參與斑馬魚癲癇發作的機制可能有哪些。
為了驗證這個假說,我們首先針對小腦創傷後的斑馬魚進行行為上的分析並利用相對定量的方式檢測已知的癲癇指標c-fos和GABAA受體gabrg2的相對基因變化。結果發現腦創傷後的斑馬魚大約有35%會出現類似癲癇的游動途徑,而且這些異常的游動途徑與癲癇指標都可透過抗癲癇藥物丙戊酸(VPA)的治療而抑制。就分子層次,我們利用microarray尋找斑馬魚腦創傷後造成癲癇發作的相關基因,在腦創傷後斑馬魚與戊四氮誘使癲癇的斑馬魚共同比對下,發現atf3與c-jun會顯著的增加,此結果暗示atf3與c-jun在癲癇發作的過程中扮演了潛在的角色,同時我們利用相對定量的方式作驗證。再者我們分析腦創傷的的斑馬魚是否會透過atf3與c-jun的訊號傳遞而對戊四氮誘使癲癇發作的現象更加敏感,最後我們發現腦創傷後有癲癇較無癲癇的c-fos, atf3與c-jun確實有明顯增加的趨勢。
綜合上述結果,我們成功的建立帶有癲癇發作性狀的腦創傷斑馬魚模式。同時我們也是第一個報導斑馬魚在癲癇發作時有atf3與c-jun參與的現象,這些發現或許可以提供腦創傷後是否有可能誘發癲癇的早期診斷。
Epilepsy is a brain disorder that develops spontaneously. Recurring seizures are caused by abnormal neuronal activity in the central nervous system (CNS). The complex etiology of epilepsy is shown to contain multiple causes, including chemical induction, brain injury and genetic factors, which further complicate the analysis. Thus, it is still not possible to predict the occurrence of epileptic seizure due to lack of understanding of its disease mechanism. Previously, we have found the abnormal swimming patterns in traumatic brain injury (TBI) zebrafish resemble the pentylenetetrazol (PTZ)-induced seizure phenotypes. Moreover, expression profiles of several epilepsy-related genes are significantly changed in TBI zebrafish. Therefore, we hypothesize that TBI zebrafish may be used as model to resolve the disease mechanism of brain injury-induced epileptic seizures.
To investigate this hypothesis, we first monitored the behavioral phenotypes of TBI zebrafish and examined the expression profile of known epilepsy markers, c-fos and GABAA receptors gabrg2, in the damaged cerebellum using PCR method. The result indicated 35% of TBI zebrafish displayed seizure-like phenotypes. The seizures-like swimming patterns could be rescued by the administration of valproic acid (VPA), which is a common anti-epileptic drug. Next, we moved to identify genes associated with the TBI-induced seizures by microarray approach. A comparison between TBI and PTZ-treated zebrafishes revealed atf3 and c-jun were significantly up-regulated, implying their potential roles in epileptogenesis. This finding was validated by qPCR assay. We next verified whether TBI may sensitize PTZ-induced seizures via the Atf3 and C-jun signaling pathways. Our data indicated that both Atf3 and C-jun might regulate the development of epileptic seizures as their up-regulations sensitize zebrafish to subsequent PTZ treatment. A comparison between TBI with and without seizures groups further revealed c-fos, atf3 and c-jun were all significantly up-regulated.
In conclusion, we established a TBI model in zebrafish with reproducible epileptic seizures. We have also reported for the first time that Atf3 and C-jun may be involved in the TBI-dependent epileptogenesis. Our findings may be used to develop assays for early diagnosis of TBI-induced epilepsy.
Table of contents
中文摘要 I
Abstract II
致謝 IV
Abbreviations IX
1. Introduction 1
1.1 Epilepsy 1
1.2 Traumatic brain injury and post-traumatic epilepsy in human 1
1.2.1 Traumatic brain injury 1
1.2.2 Post-traumatic epilepsy 2
1.3 The interaction between hormones and epilepsy 3
1.4 Experimental models of post-traumatic epilepsy 4
1.5 The advantages of zebrafish model in PTS research 5
1.5.1 Diagnosis of epileptogenesis 5
1.5.2 Easy for molecular and cellular observation in neuroscience research 5
1.5.3 High regeneration capacity 6
1.6 The aim of this thesis 6
2. Materials and Methods 8
2.1 Animals and maintenance 8
2.2 Stab lesion/ Traumatic brain injury (TBI) 8
2.3 PTZ treatment/Chemical-induced seizure 8
2.4 Behavior analysis 9
2.5 Microarray 10
2.6 Real time-quantitative PCR analysis 10
3. Results 12
3.1 TBI induces seizures-like phenotypes in adult zebrafish 12
3.1.1 Establishment of zebrafish TBI model 12
3.1.2 Behavior and molecular analyses in the TBI zebrafish 13
3.2 GABA signaling is involved in PTS zebrafish 15
3.3 atf3 and c-jun as novel seizure biomarkers 17
3.3.1 The rationale of experimental plan 17
3.3.2 Microarray and Time-series gene expression profiling 17
3.3.3 Significant gene enriched pathway analysis 18
3.3.4 Target gene expression and association analysis 18
3.3.5 Validation of atf3 and c-jun gene expression by qPCR 19
3.3.6 VPA suppresses TBI-induced atf3 and c-jun increase 20
3.3.7 TBI sensitizes zebrafish in response to PTZ treatment 20
3.4 The role of atf3 and c-jun in nervous system and seizures generation 21
3.4.1 Protein-protein interaction among C-fos, Atf3 and C-jun in human, mouse and zebrafish 21
3.4.2 The neurohormone GnRH regulates atf3 and c-jun expression 21
3.4.3 Higher epileptic and PTS marker gene expression in TBI zebrafish model with seizure 22
4. Conclusion and Discussion 24
4.1 Establishment of novel PTS model in zebrafish 24
4.2 Hypothetical model for TBI-induced epileptic seizures 24
4.3 Clinical application 26
5. Reference 28
List of tables
Table 1. Experimental design for microarray analysis 33
Table 2. RNA QA/QC information for microarray 34
Table 3. Primer list of Real Time-quantitative PCR analysis 35
List of Figures
Fig. 1 Altered swimming pattern in TBI zebrafish model 36
Fig. 2 Behavior analysis of TBI induced and PTZ-treated zebrafish 37
Fig. 3 Expression of known epileptic marker c-fos in TBI zebrafish 38
Fig. 4 Expression of GABA synaptic relative gene in TBI zebrafish 39
Fig. 5 Anti-epileptic drug suppressed TBI induced epileptic seizures 40
Fig. 6 Analysis of microarray data by STEM and PANTHER 41
Fig. 7 Identification of novel epileptic markers from PTZ-induced and TBI zebrafish 42
Fig. 8 Validation of atf3 and c-jun as novel epileptic markers in TBI 43
Fig. 9 Protein-protein interaction among C-fos, Atf3 and C-jun 45
Fig. 10 Up-regulation of epileptic/PTS marker gene expression in post-traumatic seizure zebrafish 46
Fig. 11 Proposed model for etiological mechanism of TBI- induced epileptic seizures 47

Supporting Information
Fig. S1 Abnormal swimming pattern in zebrafish model of TBI to the cerebellum 48
Fig. S2 Histological illustration of traumatic brain injury 49
Fig. S3 The rationale of identifying genes associated with TBI-induced epileptic seizures 50
Fig. S4 Significant expression patterns among control, TBI, PTZ-treated and tandem TBI plus PTZ-treated groups 51
Fig. S5 Wnt signaling pathway/PCP signaling pathway (retrieved from KEGG) 52
Fig. S6 cyp11a1 and cyp17a1 are increased after TBI in zebrafish 53
1 Hauser, W. A., Annegers, J. F. & Kurland, L. T. Incidence of epilepsy and unprovoked seizures in Rochester, Minnesota: 1935-1984. Epilepsia 34, 453-468 (1993).
2 Eadie, M. J. Shortcomings in the current treatment of epilepsy. Expert review of neurotherapeutics 12, 1419-1427, doi:10.1586/ern.12.129 (2012).
3 Corrigan, J. D., Selassie, A. W. & Orman, J. A. The epidemiology of traumatic brain injury. The Journal of head trauma rehabilitation 25, 72-80, doi:10.1097/HTR.0b013e3181ccc8b4 (2010).
4 Hunt, R. F., Boychuk, J. A. & Smith, B. N. Neural circuit mechanisms of post-traumatic epilepsy. Frontiers in cellular neuroscience 7, 89, doi:10.3389/fncel.2013.00089 (2013).
5 Pitkanen, A. & Bolkvadze, T. in Jasper's Basic Mechanisms of the Epilepsies (eds J. L. Noebels et al.) (2012).
6 Wang, H. et al. Post-traumatic seizures--a prospective, multicenter, large case study after head injury in China. Epilepsy research 107, 272-278, doi:10.1016/j.eplepsyres.2013.10.006 (2013).
7 Azcoitia, I., Arevalo, M. A., De Nicola, A. F. & Garcia-Segura, L. M. Neuroprotective actions of estradiol revisited. Trends in endocrinology and metabolism: TEM 22, 467-473, doi:10.1016/j.tem.2011.08.002 (2011).
8 Mahesh, V. B., Dhandapani, K. M. & Brann, D. W. Role of astrocytes in reproduction and neuroprotection. Molecular and cellular endocrinology 246, 1-9, doi:10.1016/j.mce.2005.11.017 (2006).
9 Pennell, P. B. Hormonal aspects of epilepsy. Neurologic clinics 27, 941-965, doi:10.1016/j.ncl.2009.08.005 (2009).
10 Frye, C. A. Hormonal influences on seizures: basic neurobiology. International review of neurobiology 83, 27-77, doi:10.1016/S0074-7742(08)00003-2 (2008).
11 Hunt, R. F., Scheff, S. W. & Smith, B. N. Posttraumatic epilepsy after controlled cortical impact injury in mice. Experimental neurology 215, 243-252, doi:10.1016/j.expneurol.2008.10.005 (2009).
12 Marklund, N. & Hillered, L. Animal modelling of traumatic brain injury in preclinical drug development: where do we go from here? British journal of pharmacology 164, 1207-1229, doi:10.1111/j.1476-5381.2010.01163.x (2011).
13 Sharma, A., Mohammad, F. & Singh, P. Gender differences in a Drosophila transcriptomic model of chronic pentylenetetrazole induced behavioral deficit. PloS one 4, e8136, doi:10.1371/journal.pone.0008136 (2009).
14 Naseer, M. I. et al. Decreased GABABR expression and increased neuronal cell death in developing rat brain after PTZ-induced seizure. Neurological sciences : official journal of the Italian Neurological Society and of the Italian Society of Clinical Neurophysiology 34, 497-503, doi:10.1007/s10072-012-1083-0 (2013).
15 Wong, K. et al. Modeling seizure-related behavioral and endocrine phenotypes in adult zebrafish. Brain research 1348, 209-215, doi:10.1016/j.brainres.2010.06.012 (2010).
16 Stewart, A. M. et al. Perspectives of zebrafish models of epilepsy: what, how and where next? Brain research bulletin 87, 135-143, doi:10.1016/j.brainresbull.2011.11.020 (2012).
17 SERRUYS, A.-S. Antiepileptic natural product discovery using a zebrafish seizure model, KU Leuven, (2012).
18 Baraban, S. C., Dinday, M. T. & Hortopan, G. A. Drug screening in Scn1a zebrafish mutant identifies clemizole as a potential Dravet syndrome treatment. Nature communications 4, 2410, doi:10.1038/ncomms3410 (2013).
19 Johnston, L. et al. Electrophysiological recording in the brain of intact adult zebrafish. Journal of visualized experiments : JoVE, e51065, doi:10.3791/51065 (2013).
20 Baraban, S. C., Taylor, M. R., Castro, P. A. & Baier, H. Pentylenetetrazole induced changes in zebrafish behavior, neural activity and c-fos expression. Neuroscience 131, 759-768, doi:10.1016/j.neuroscience.2004.11.031 (2005).
21 Stewart, A. M., Braubach, O., Spitsbergen, J., Gerlai, R. & Kalueff, A. V. Zebrafish models for translational neuroscience research: from tank to bedside. Trends in neurosciences 37, 264-278, doi:10.1016/j.tins.2014.02.011 (2014).
22 Sato, T., Takahoko, M. & Okamoto, H. HuC:Kaede, a useful tool to label neural morphologies in networks in vivo. Genesis 44, 136-142, doi:10.1002/gene.20196 (2006).
23 Marz, M., Schmidt, R., Rastegar, S. & Strahle, U. Regenerative response following stab injury in the adult zebrafish telencephalon. Developmental dynamics : an official publication of the American Association of Anatomists 240, 2221-2231, doi:10.1002/dvdy.22710 (2011).
24 Kizil, C., Kaslin, J., Kroehne, V. & Brand, M. Adult neurogenesis and brain regeneration in zebrafish. Developmental neurobiology 72, 429-461, doi:10.1002/dneu.20918 (2012).
25 Wu, C. C. et al. On the crucial cerebellar wound healing-related pathways and their cross-talks after traumatic brain injury in Danio rerio. PloS one 9, e97902, doi:10.1371/journal.pone.0097902 (2014).
26 Huang, W. C. et al. Combined use of MS-222 (tricaine) and isoflurane extends anesthesia time and minimizes cardiac rhythm side effects in adult zebrafish. Zebrafish 7, 297-304, doi:10.1089/zeb.2010.0653 (2010).
27 Boop, S., Wheless, J., Van Poppel, K., McGregor, A. & Boop, F. A. Cerebellar seizures. Journal of neurosurgery. Pediatrics 12, 288-292, doi:10.3171/2013.5.PEDS1394 (2013).
28 Bozzi, Y., Dunleavy, M. & Henshall, D. C. Cell signaling underlying epileptic behavior. Frontiers in behavioral neuroscience 5, 45, doi:10.3389/fnbeh.2011.00045 (2011).
29 Morgan, J. I., Cohen, D. R., Hempstead, J. L. & Curran, T. Mapping patterns of c-fos expression in the central nervous system after seizure. Science 237, 192-197 (1987).
30 Tao, H. et al. Mutations in prickle orthologs cause seizures in flies, mice, and humans. American journal of human genetics 88, 138-149, doi:10.1016/j.ajhg.2010.12.012 (2011).
31 Gray, R. S., Roszko, I. & Solnica-Krezel, L. Planar cell polarity: coordinating morphogenetic cell behaviors with embryonic polarity. Developmental cell 21, 120-133, doi:10.1016/j.devcel.2011.06.011 (2011).
32 Briggs, S. W. & Galanopoulou, A. S. Altered GABA signaling in early life epilepsies. Neural plasticity 2011, 527605, doi:10.1155/2011/527605 (2011).
33 Huang, R. Q. et al. Pentylenetetrazole-induced inhibition of recombinant gamma-aminobutyric acid type A (GABA(A)) receptors: mechanism and site of action. The Journal of pharmacology and experimental therapeutics 298, 986-995 (2001).
34 Lee, G. H. et al. Zebrafish larvae exposed to ginkgotoxin exhibit seizure-like behavior that is relieved by pyridoxal-5'-phosphate, GABA and anti-epileptic drugs. Disease models & mechanisms 5, 785-795, doi:10.1242/dmm.009449 (2012).
35 Kang, T. C. et al. Epileptogenic roles of astroglial death and regeneration in the dentate gyrus of experimental temporal lobe epilepsy. Glia 54, 258-271, doi:10.1002/glia.20380 (2006).
36 Yaffe, R. B. et al. Physiology of functional and effective networks in epilepsy. Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology 126, 227-236, doi:10.1016/j.clinph.2014.09.009 (2015).
37 Peters, C. N. & Pohlmann-Eden, B. Intravenous valproate as an innovative therapy in seizure emergency situations including status epilepticus--experience in 102 adult patients. Seizure : the journal of the British Epilepsy Association 14, 164-169, doi:10.1016/j.seizure.2005.01.002 (2005).
38 Zhao, Y. et al. Interactions between SIRT1 and MAPK/ERK regulate neuronal apoptosis induced by traumatic brain injury in vitro and in vivo. Experimental neurology 237, 489-498, doi:10.1016/j.expneurol.2012.07.004 (2012).
39 Mohammad, F., Singh, P. & Sharma, A. A Drosophila systems model of pentylenetetrazole induced locomotor plasticity responsive to antiepileptic drugs. BMC systems biology 3, 11, doi:10.1186/1752-0509-3-11 (2009).
40 Busceti, C. L. et al. Induction of the Wnt inhibitor, Dickkopf-1, is associated with neurodegeneration related to temporal lobe epilepsy. Epilepsia 48, 694-705, doi:10.1111/j.1528-1167.2007.01055.x (2007).
41 Wu, D. & Murashov, A. K. Molecular mechanisms of peripheral nerve regeneration: emerging roles of microRNAs. Frontiers in physiology 4, 55, doi:10.3389/fphys.2013.00055 (2013).
42 Kiryu-Seo, S. et al. Neuronal injury-inducible gene is synergistically regulated by ATF3, c-Jun, and STAT3 through the interaction with Sp1 in damaged neurons. The Journal of biological chemistry 283, 6988-6996, doi:10.1074/jbc.M707514200 (2008).
43 Binder, A. K., Grammer, J. C., Herndon, M. K., Stanton, J. D. & Nilson, J. H. GnRH regulation of Jun and Atf3 requires calcium, calcineurin, and NFAT. Molecular endocrinology 26, 873-886, doi:10.1210/me.2012-1045 (2012).
44 Mei, X., Wu, S., Bassuk, A. G. & Slusarski, D. C. Mechanisms of prickle1a function in zebrafish epilepsy and retinal neurogenesis. Disease models & mechanisms 6, 679-688, doi:10.1242/dmm.010793 (2013).
45 Kiryu-Seo, S. & Kiyama, H. The nuclear events guiding successful nerve regeneration. Frontiers in molecular neuroscience 4, 53, doi:10.3389/fnmol.2011.00053 (2011).
46 Medyouf, H. & Ghysdael, J. The calcineurin/NFAT signaling pathway: a novel therapeutic target in leukemia and solid tumors. Cell cycle (Georgetown, Tex.) 7, 297-303 (2008).
47 Best, J. D. & Alderton, W. K. Zebrafish: An in vivo model for the study of neurological diseases. Neuropsychiatric disease and treatment 4, 567-576 (2008).
48 Kalueff, A. V., Stewart, A. M. & Gerlai, R. Zebrafish as an emerging model for studying complex brain disorders. Trends in pharmacological sciences 35, 63-75, doi:10.1016/j.tips.2013.12.002 (2014).
49 Wykes, R. C. et al. Optogenetic and potassium channel gene therapy in a rodent model of focal neocortical epilepsy. Science translational medicine 4, 161ra152, doi:10.1126/scitranslmed.3004190 (2012).
50 Hunt, D., Raivich, G. & Anderson, P. N. Activating transcription factor 3 and the nervous system. Frontiers in molecular neuroscience 5, 7, doi:10.3389/fnmol.2012.00007 (2012).
51 Ding, D. X. et al. Dynamic expression patterns of ATF3 and p53 in the hippocampus of a pentylenetetrazole-induced kindling model. Molecular medicine reports 10, 645-651, doi:10.3892/mmr.2014.2256 (2014).
52 Hsieh, C. L. et al. Gastrodia elata modulated activator protein 1 via c-Jun N-terminal kinase signaling pathway in kainic acid-induced epilepsy in rats. Journal of ethnopharmacology 109, 241-247, doi:10.1016/j.jep.2006.07.024 (2007).
53 Li, J. et al. Estrogen enhances neurogenesis and behavioral recovery after stroke. Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism 31, 413-425, doi:10.1038/jcbfm.2010.181 (2011).
54 Frye, C. A. in International review of neurobiology Ch. Chapter3: HORMONALINFLUENCESONSEIZURES: BASIC NEUROBIOLOGY, 27-77 (Departments of Psychology, Biology, and Centers for Neuroscience and Life Sciences Research , The University at Albany-State University of New York, 2008).
55 Saner-Amigh, K. J. & Halvorson, L. M. Andrology and Fertility Assessment. Labmedicine 42, 41-50, doi:Doi 10.1309/Lmzah8r2fki7soya (2011).
56 Mesiwala, A. H. et al. Focal motor seizures with secondary generalization arising in the cerebellum. Case report and review of the literature. Journal of neurosurgery 97, 190-196, doi:10.3171/jns.2002.97.1.0190 (2002).
57 in The Epilepsies: The Diagnosis and Management of the Epilepsies in Adults and Children in Primary and Secondary Care: Pharmacological Update of Clinical Guideline 20 National Institute for Health and Clinical Excellence: Guidance (National clinical guideline centre, 2012).
58 Veening, J. G. & Barendregt, H. P. The regulation of brain states by neuroactive substances distributed via the cerebrospinal fluid; a review. Cerebrospinal fluid research 7, 1, doi:10.1186/1743-8454-7-1 (2010).

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *