帳號:guest(3.144.17.207)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):吳建欣
作者(外文):Wu, Jian-Hsin
論文名稱(中文):開發重組H7N9血凝素禽流感黏膜疫苗
論文名稱(外文):Studies of recombinant HA proteins with different adjuvants for avian influenza H7N9 mucosal vaccine development
指導教授(中文):吳夙欽
指導教授(外文):Wu, Suh-Chin
口試委員(中文):林思偕
趙黛瑜
吳夙欽
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生物科技研究所
學號:102080502
出版年(民國):104
畢業學年度:103
語文別:中文
論文頁數:57
中文關鍵詞:黏膜疫苗H7N9
外文關鍵詞:mucosal vaccineH7N9
相關次數:
  • 推薦推薦:0
  • 點閱點閱:169
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
2013年,新型禽流感H7N9病毒在中國大陸沿海城鎮爆發。H7N9病毒屬於低致病性禽流感病毒,但在感染人類後會產生急性呼吸道窘迫症並導致死亡,死亡率已高達37%,至今仍無可對抗H7N9病毒的疫苗上市。目前有關H7N9病毒疫苗的研究仍以肌肉注射的免疫方式為發展主軸,但H7N9病毒是經呼吸道感染,因此,本研究主要是以鼻噴劑的策略,發展H7N9重組血凝素黏膜疫苗。
此研究中使用中國倉鼠卵巢細胞(CHO/dhFr-)與草地夜蛾蟲(Sf9)細胞生產重組H7HA蛋白,製備成黏膜疫苗後免疫小鼠,結果顯示Sf9細胞表現的蛋白有較高的IgG與IgA效價、HI效價與NT效價,可以引起較強的免疫反應;而CHO細胞表現的蛋白本身不具引發免疫反應的能力,必須添加佐劑後才能引起小鼠體內的免疫反應。接著,使用Sf9細胞所生產的蛋白搭配不同的佐劑,研究何種佐劑最適合H7N9黏膜疫苗。結果指出CpG與PELC混合而成的佐劑,能在小鼠黏膜組織與血清中有較佳的IgG和IgA效價,其次是第二型b型忌熱型腸毒素(LTIIb)混合PELC的組合。最大的發現是Sf9所生產的H7HA蛋白在不需添加佐劑的情況下,依舊可以引起小鼠黏膜組織與血清中IgG和IgA效價,且僅略低於搭配細菌鞭毛蛋白(FliC)或是第二型b型忌熱型腸毒素(LTIIb)的黏膜疫苗。結果顯示Sf9細胞表現的H7HA重組蛋白本身可能是一個具發展潛力的候選黏膜疫苗。
The novel avian-origin influenza A/H7N9 virus cause outbreak in China coastal towns in 2013. The H7N9 virus is belongs to low pathogenic avian influenza virus, resulting in acute respiratory distress syndrome in human which infected with virus and human death. The mortality rate of H7N9 is about 37%. Until June 2015, there is no available vaccine against H7N9 virus infection. Most of the vaccines are administered intramuscularly, whereas human get infected with the H7N9 virus through respiratory tract. Previous research in 2014 shows that after two doses immunization of recombinant baculovirus subunit mucosal vaccine, the mice can survive in H7N9 virus challenge experiment. These results show that it is feasible to develop mucosal vaccines. Thus, in this study we developed the rH7HA mucosal vaccine using intranasal immunization strategy. In this study I used Chinese hamster ovary cells (CHO / dhFr-) and Spodoptera insect (Sf9) cells to produce recombinant H7HA protein and used these protein as mucosal vaccines to immune mice. The result showed that the protein produced by Sf9 cells (rH7HA-Sf9) induced high IgG, IgA, HI and NT titers in mice serum and caused strong immune response. But proteins expressed by CHO cells (rH7HA-CHO) without adjuvants did not have the ability to elicit an immune response in mice. Next, I used rH7HA-Sf9 formulated with different adjuvants as mucosal vaccines to find the best rH7HA-Sf9/adjuvant combination for H7N9 mucosal vaccine development. The result indicate that compared with other adjuvants, CpG mixed with PELC as adjuvant formulated with rH7HA-Sf9 induce the highest IgG and IgA titers in mice mucosal tissues and serum. Using type IIb heat-labile toxin B subunits (LTIIb) mixed with PELC as adjuvant also can induce high IgG and IgA titers. The interesting finding is that rH7HA-Sf9 proteins without adjuvant can cause higher IgG, IgA titers in mice mucosal tissue and serum than those induced by protein formulated with R848, and slightly lower than those induced by protein formulated with flagellum (FliC) or type IIb heat-labile toxin B subunits. The rH7HA-Sf9 proteins may be a candidate for H7N9 mucosal vaccine development.
摘要 II
Abstract II
致謝 IV
一、簡介 1
1.1. A型流感病毒 1
1.2. H7N9新型禽流感病毒 1
1.3. H7N9疫苗的發展 2
1.4.黏膜組織的免疫反應 4
1.5.黏膜疫苗佐劑開發 6
1.6.類鐸受體新型黏膜佐劑開發 6
二、研究目標 9
三、材料與方法 10
3.1.小鼠來源 10
3.2.重組蛋白(rHA)序列 10
3.3.細胞株 10
3.4.製造重組桿狀病毒 11
3.5.使用Sf9細胞表現並純化蛋白 12
3.6.利用CHO細胞表現並純化蛋白 12
3.7.SDS膠體電泳法(SDS-PAGE) 13
3.8.膠體染色法(Coomassie Blue Staining) 13
3.9.蛋白濃度測定 13
3.10.西方墨點法(Western Blotting) 14
3.11.Endo H與PNGase F與血球凝集素(HA)的作用 14
3.12.胎球蛋白結合試驗(Fetuin-binding assay) 15
3.13.胎球蛋白結合性抑制實驗(fetuin-binding inhibition assay) 15
3.14.血球凝集反應試驗 16
3.15.黏膜疫苗免疫的組別 16
3.16.黏膜疫苗製備 17
3.17.黏膜疫苗免疫 17
3.18.小鼠免疫樣品採集 17
3.19.酵素結合免疫吸附分析(Enzyme-Linked Immunoasorbent Assay) 18
3.20.血球凝集反應抑制試驗(Hemagglutinin inhibition assay) 19
3.21.抗體中和能力試驗(Neutralization assay) 19
3.22.T細胞之細胞激素分析 20
四、結果 21
4.1.重組H7HA蛋白的表現與特徵分析 21
4.2.不同蛋白免疫小鼠組別後血清中對H7HA專一性抗體的產生 23
4.3.血清中抗體的中和能力 24
4.4.不同黏膜佐劑組別血清中對H7HA專一性抗體的產生 25
4.5. 不同黏膜佐劑組別支氣管及肺部沖洗液中對H7HA專一性抗體的產生 26
4.6.不同黏膜佐劑組別細胞激素的產生 28
五、討論 30
六、參考文獻 35
七、圖檔 44
Table 1 黏膜疫苗接種組別 44
Table 2 黏膜疫苗免疫組別 45
Fig.1 CHO/dhFr-細胞與Sf9昆蟲細胞表現的重組H7HA蛋白特徵 46
Fig.2 血球凝集素抑制試驗與胎球蛋白結合實驗 47
Fig.3 不同免疫組別血清中對H7HA專一性抗體的產生 48
Fig.4 不同免疫組別產生的血凝素抑制性抗體與抗體中和性試驗 49
Fig.5 重組H7HA蛋白與胎球蛋白結合能力抑制實驗 50
Fig.6 不同免疫組別血清中對H7HA專一性抗體的產生 51
Fig.7 不同免疫組別支氣管及肺部沖洗液中對H7HA專一性抗體的產生 52
Fig.8 不同組別血清中抗體對血凝素功能的抑制性 53
Fig.9重組H7HA蛋白與胎球蛋白結合能力抑制實驗 54
Fig.10 不同組別脾臟細胞與周邊淋巴結細胞中細胞激素的產生 56
Fig.S1 Th17細胞活化的訊息傳遞路徑 57


Ahmad, G., W. Zhang, W. Torben, Z. Noor, and A.A. Siddiqui. 2010. Protective effects of Sm-p80 in the presence of resiquimod as an adjuvant against challenge infection with Schistosoma mansoni in mice. International journal of infectious diseases : IJID : official publication of the International Society for Infectious Diseases 14:e781-787.
Arzey, G.G., P.D. Kirkland, K.E. Arzey, M. Frost, P. Maywood, S. Conaty, A.C. Hurt, Y.M. Deng, P. Iannello, I. Barr, D.E. Dwyer, M. Ratnamohan, K. McPhie, and P. Selleck. 2012. Influenza virus A (H10N7) in chickens and poultry abattoir workers, Australia. Emerging infectious diseases 18:814-816.
Azizi, A., A. Kumar, F. Diaz-Mitoma, and J. Mestecky. 2010. Enhancing oral vaccine potency by targeting intestinal M cells. PLoS pathogens 6:e1001147.
Baldridge, J.R., Y. Yorgensen, J.R. Ward, and J.T. Ulrich. 2000. Monophosphoryl lipid A enhances mucosal and systemic immunity to vaccine antigens following intranasal administration. Vaccine 18:2416-2425.
Bargieri, D.Y., D.S. Rosa, C.J. Braga, B.O. Carvalho, F.T. Costa, N.M. Espindola, A.J. Vaz, I.S. Soares, L.C. Ferreira, and M.M. Rodrigues. 2008. New malaria vaccine candidates based on the Plasmodium vivax Merozoite Surface Protein-1 and the TLR-5 agonist Salmonella Typhimurium FliC flagellin. Vaccine 26:6132-6142.
Berenson, C.S., H.F. Nawar, H.C. Yohe, S.A. Castle, D.J. Ashline, V.N. Reinhold, G. Hajishengallis, and T.D. Connell. 2010. Mammalian cell ganglioside-binding specificities of E. coli enterotoxins LT-IIb and variant LT-IIb(T13I). Glycobiology 20:41-54.
Berin, M.C., A. Darfeuille-Michaud, L.J. Egan, Y. Miyamoto, and M.F. Kagnoff. 2002. Role of EHEC O157:H7 virulence factors in the activation of intestinal epithelial cell NF-kappaB and MAP kinase pathways and the upregulated expression of interleukin 8. Cellular microbiology 4:635-648.
Boghdadi, G., D.A. Khalik, S.A. Wahab, and A. Farghaly. 2013. Immunomodulatory effect of R848 on cytokine production associated with Schistosoma mansoni infection. Parasitology research 112:135-140.
Chang, S.Y., P.H. Lin, J.C. Tsai, C.C. Hung, and S.C. Chang. 2013. The first case of H7N9 influenza in Taiwan. Lancet 381:1621.
Chen, Z., M. Baz, J. Lu, M. Paskel, C. Santos, K. Subbarao, H. Jin, and Y. Matsuoka. 2014. Development of a high-yield live attenuated H7N9 influenza virus vaccine that provides protection against homologous and heterologous H7 wild-type viruses in ferrets. Journal of virology 88:7016-7023.
Childers, N.K., K.L. Miller, G. Tong, J.C. Llarena, T. Greenway, J.T. Ulrich, and S.M. Michalek. 2000. Adjuvant activity of monophosphoryl lipid A for nasal and oral immunization with soluble or liposome-associated antigen. Infection and immunity 68:5509-5516.
Connell, T.D. 2007. Cholera toxin, LT-I, LT-IIa and LT-IIb: the critical role of ganglioside binding in immunomodulation by type I and type II heat-labile enterotoxins. Expert review of vaccines 6:821-834.
Couch, R.B., S.M. Patel, C.L. Wade-Bowers, and D. Nino. 2012. A randomized clinical trial of an inactivated avian influenza A (H7N7) vaccine. PloS one 7:e49704.
Cui, L., D. Liu, W. Shi, J. Pan, X. Qi, X. Li, X. Guo, M. Zhou, W. Li, J. Li, J. Haywood, H. Xiao, X. Yu, X. Pu, Y. Wu, H. Yu, K. Zhao, Y. Zhu, B. Wu, T. Jin, Z. Shi, F. Tang, F. Zhu, Q. Sun, L. Wu, R. Yang, J. Yan, F. Lei, B. Zhu, W. Liu, J. Ma, H. Wang, and G.F. Gao. 2014. Dynamic reassortments and genetic heterogeneity of the human-infecting influenza A (H7N9) virus. Nature communications 5:3142.
Czerkinsky, C., and J. Holmgren. 2010. Topical immunization strategies. Mucosal immunology 3:545-555.
De Groot, A.S., L. Moise, R. Liu, A.H. Gutierrez, F. Terry, O.A. Koita, T.M. Ross, and W. Martin. 2014. Cross-conservation of T-cell epitopes: now even more relevant to (H7N9) influenza vaccine design. Human vaccines & immunotherapeutics 10:256-262.
Devriendt, B., B.G. De Geest, B.M. Goddeeris, and E. Cox. 2012. Crossing the barrier: Targeting epithelial receptors for enhanced oral vaccine delivery. Journal of controlled release : official journal of the Controlled Release Society 160:431-439.
Didierlaurent, A., I. Ferrero, L.A. Otten, B. Dubois, M. Reinhardt, H. Carlsen, R. Blomhoff, S. Akira, J.P. Kraehenbuhl, and J.C. Sirard. 2004. Flagellin promotes myeloid differentiation factor 88-dependent development of Th2-type response. Journal of immunology 172:6922-6930.
Duan, Y., H. Gu, R. Chen, Z. Zhao, L. Zhang, L. Xing, C. Lai, P. Zhang, Z. Li, K. Zhang, Z. Wang, S. Zhang, X. Wang, and P. Yang. 2014. Response of mice and ferrets to a monovalent influenza A (H7N9) split vaccine. PloS one 9:e99322.
Dumais, N., A. Patrick, R.B. Moss, H.L. Davis, and K.L. Rosenthal. 2002. Mucosal immunization with inactivated human immunodeficiency virus plus CpG oligodeoxynucleotides induces genital immune responses and protection against intravaginal challenge. The Journal of infectious diseases 186:1098-1105.
Fouchier, R.A., P.M. Schneeberger, F.W. Rozendaal, J.M. Broekman, S.A. Kemink, V. Munster, T. Kuiken, G.F. Rimmelzwaan, M. Schutten, G.J. Van Doornum, G. Koch, A. Bosman, M. Koopmans, and A.D. Osterhaus. 2004. Avian influenza A virus (H7N7) associated with human conjunctivitis and a fatal case of acute respiratory distress syndrome. Proceedings of the National Academy of Sciences of the United States of America 101:1356-1361.
Fukuta, S., J.L. Magnani, E.M. Twiddy, R.K. Holmes, and V. Ginsburg. 1988. Comparison of the carbohydrate-binding specificities of cholera toxin and Escherichia coli heat-labile enterotoxins LTh-I, LT-IIa, and LT-IIb. Infection and immunity 56:1748-1753.
Gao, G.F. 2014. Influenza and the live poultry trade. Science 344:235.
Giddings, O.K., C.S. Eickhoff, N.L. Sullivan, and D.F. Hoft. 2010. Intranasal vaccinations with the trans-sialidase antigen plus CpG Adjuvant induce mucosal immunity protective against conjunctival Trypanosoma cruzi challenges. Infection and immunity 78:1333-1338.
Hajishengallis, G., R.I. Tapping, M.H. Martin, H. Nawar, E.A. Lyle, M.W. Russell, and T.D. Connell. 2005. Toll-like receptor 2 mediates cellular activation by the B subunits of type II heat-labile enterotoxins. Infection and immunity 73:1343-1349.
Hemmi, H., T. Kaisho, O. Takeuchi, S. Sato, H. Sanjo, K. Hoshino, T. Horiuchi, H. Tomizawa, K. Takeda, and S. Akira. 2002. Small anti-viral compounds activate immune cells via the TLR7 MyD88-dependent signaling pathway. Nature immunology 3:196-200.
Holmgren, J., and C. Czerkinsky. 2005. Mucosal immunity and vaccines. Nature medicine 11:S45-53.
Hong, S.H., Y.H. Byun, C.T. Nguyen, S.Y. Kim, B.L. Seong, S. Park, G.J. Woo, Y. Yoon, J.T. Koh, K. Fujihashi, J.H. Rhee, and S.E. Lee. 2012. Intranasal administration of a flagellin-adjuvanted inactivated influenza vaccine enhances mucosal immune responses to protect mice against lethal infection. Vaccine 30:466-474.
Horimoto, T., and Y. Kawaoka. 2005. Influenza: lessons from past pandemics, warnings from current incidents. Nature reviews. Microbiology 3:591-600.
Huang, M.H., A.H. Chou, S.P. Lien, H.W. Chen, C.Y. Huang, W.W. Chen, P. Chong, S.J. Liu, and C.H. Leng. 2009. Formulation and immunological evaluation of novel vaccine delivery systems based on bioresorbable poly(ethylene glycol)-block-poly(lactide-co-epsilon-caprolactone). Journal of biomedical materials research. Part B, Applied biomaterials 90:832-841.
Hybiske, K., J.K. Ichikawa, V. Huang, S.J. Lory, and T.E. Machen. 2004. Cystic fibrosis airway epithelial cell polarity and bacterial flagellin determine host response to Pseudomonas aeruginosa. Cellular microbiology 6:49-63.
Illum, L., and S.S. Davis. 2001. Nasal vaccination: a non-invasive vaccine delivery method that holds great promise for the future. Advanced drug delivery reviews 51:1-3.
Kiyono, H., and S. Fukuyama. 2004. NALT- versus Peyer's-patch-mediated mucosal immunity. Nature reviews. Immunology 4:699-710.
Klausberger, M., M. Wilde, D. Palmberger, R. Hai, R.A. Albrecht, I. Margine, A. Hirsh, A. Garcia-Sastre, R. Grabherr, and F. Krammer. 2014. One-shot vaccination with an insect cell-derived low-dose influenza A H7 virus-like particle preparation protects mice against H7N9 challenge. Vaccine 32:355-362.
Krammer, F., R.A. Albrecht, G.S. Tan, I. Margine, R. Hai, M. Schmolke, J. Runstadler, S.F. Andrews, P.C. Wilson, R.J. Cox, J.J. Treanor, A. Garcia-Sastre, and P. Palese. 2014. Divergent H7 immunogens offer protection from H7N9 virus challenge. Journal of virology 88:3976-3985.
Kreijtz, J.H., E.J. Kroeze, K.J. Stittelaar, L. de Waal, G. van Amerongen, S. van Trierum, P. van Run, T. Bestebroer, T. Kuiken, R.A. Fouchier, G.F. Rimmelzwaan, and A.D. Osterhaus. 2013. Low pathogenic avian influenza A(H7N9) virus causes high mortality in ferrets upon intratracheal challenge: a model to study intervention strategies. Vaccine 31:4995-4999.
Kreijtz, J.H., L.C. Wiersma, H.L. De Gruyter, S.E. Vogelzang-van Trierum, G. van Amerongen, K.J. Stittelaar, R.A. Fouchier, A.D. Osterhaus, G. Sutter, and G.F. Rimmelzwaan. 2015. A single immunization with modified vaccinia virus Ankara-based influenza virus H7 vaccine affords protection in the influenza A(H7N9) pneumonia ferret model. The Journal of infectious diseases 211:791-800.
Lai, C.H., N. Tang, J.T. Jan, M.H. Huang, C.Y. Lu, B.L. Chiang, L.M. Huang, and S.C. Wu. 2015. Use of recombinant flagellin in oil-in-water emulsions enhances hemagglutinin-specific mucosal IgA production and IL-17 secreting T cells against H5N1 avian influenza virus infection. Vaccine
Lamichhane, A., T. Azegamia, and H. Kiyonoa. 2014. The mucosal immune system for vaccine development. Vaccine 32:6711-6723.
Lee, S.E., S.Y. Kim, B.C. Jeong, Y.R. Kim, S.J. Bae, O.S. Ahn, J.J. Lee, H.C. Song, J.M. Kim, H.E. Choy, S.S. Chung, M.N. Kweon, and J.H. Rhee. 2006. A bacterial flagellin, Vibrio vulnificus FlaB, has a strong mucosal adjuvant activity to induce protective immunity. Infection and immunity 74:694-702.
Lee, C.H., P. Masso-Welch, G. Hajishengallis, and T.D. Connell. 2011. TLR2-dependent modulation of dendritic cells by LT-IIa-B5, a novel mucosal adjuvant derived from a type II heat-labile enterotoxin. Journal of leukocyte biology 90:911-921.
Liang, S., K.B. Hosur, S. Lu, H.F. Nawar, B.R. Weber, R.I. Tapping, T.D. Connell, and G. Hajishengallis. 2009a. Mapping of a microbial protein domain involved in binding and activation of the TLR2/TLR1 heterodimer. Journal of immunology 182:2978-2985.
Liang, S., K.B. Hosur, H.F. Nawar, M.W. Russell, T.D. Connell, and G. Hajishengallis. 2009b. In vivo and in vitro adjuvant activities of the B subunit of Type IIb heat-labile enterotoxin (LT-IIb-B5) from Escherichia coli. Vaccine 27:4302-4308.
Liang, S., M. Wang, R.I. Tapping, V. Stepensky, H.F. Nawar, M. Triantafilou, K. Triantafilou, T.D. Connell, and G. Hajishengallis. 2007. Ganglioside GD1a is an essential coreceptor for Toll-like receptor 2 signaling in response to the B subunit of type IIb enterotoxin. The Journal of biological chemistry 282:7532-7542.
Lin, S.C., M.H. Huang, P.C. Tsou, L.M. Huang, P. Chong, and S.C. Wu. 2011. Recombinant trimeric HA protein immunogenicity of H5N1 avian influenza viruses and their combined use with inactivated or adenovirus vaccines. PloS one 6:e20052.
Lin, S.C., J.T. Jan, B. Dionne, M. Butler, M.H. Huang, C.Y. Wu, C.H. Wong, and S.C. Wu. 2013. Different immunity elicited by recombinant H5N1 hemagglutinin proteins containing pauci-mannose, high-mannose, or complex type N-glycans. PloS one 8:e66719.
Liu, D., W. Shi, and G.F. Gao. 2014a. Poultry carrying H9N2 act as incubators for novel human avian influenza viruses. Lancet 383:869.
Liu, J., H. Xiao, Y. Wu, D. Liu, X. Qi, Y. Shi, and G.F. Gao. 2014b. H7N9: a low pathogenic avian influenza A virus infecting humans. Current opinion in virology 5:91-97.
Lubberts, E., M.I. Koenders, and W.B. van den Berg. 2005. The role of T-cell interleukin-17 in conducting destructive arthritis: lessons from animal models. Arthritis research & therapy 7:29-37.
Mapletoft, J.W., M. Oumouna, J. Kovacs-Nolan, L. Latimer, G. Mutwiri, L.A. Babiuk, and S. van Drunen Littel-van den Hurk. 2008. Intranasal immunization of mice with a formalin-inactivated bovine respiratory syncytial virus vaccine co-formulated with CpG oligodeoxynucleotides and polyphosphazenes results in enhanced protection. The Journal of general virology 89:250-260.
Marinoni, B., A. Ceribelli, M.S. Massarotti, and C. Selmi. 2014. The Th17 axis in psoriatic disease: pathogenetic and therapeutic implications. Auto- immunity highlights 5:9-19.
Martins, K.A., S. Bavari, and A.M. Salazar. 2015. Vaccine adjuvant uses of poly-IC and derivatives. Expert review of vaccines 14:447-459.
McCluskie, M.J., R.D. Weeratna, P.J. Payette, and H.L. Davis. 2002. Parenteral and mucosal prime-boost immunization strategies in mice with hepatitis B surface antigen and CpG DNA. FEMS immunology and medical microbiology 32:179-185.
McGhee, J.R. 2011. A mucosal gateway for vaccines. Nature biotechnology 29:136-138.
McGhee, J.R., J. Mestecky, M.T. Dertzbaugh, J.H. Eldridge, M. Hirasawa, and H. Kiyono. 1992. The mucosal immune system: from fundamental concepts to vaccine development. Vaccine 10:75-88.
Medina, R.A., and A. Garcia-Sastre. 2011. Influenza A viruses: new research developments. Nature reviews. Microbiology 9:590-603.
Nawar, H.F., S. Arce, M.W. Russell, and T.D. Connell. 2005. Mucosal adjuvant properties of mutant LT-IIa and LT-IIb enterotoxins that exhibit altered ganglioside-binding activities. Infection and immunity 73:1330-1342.
Nguyen, C.T., S.Y. Kim, M.S. Kim, S.E. Lee, and J.H. Rhee. 2011. Intranasal immunization with recombinant PspA fused with a flagellin enhances cross-protective immunity against Streptococcus pneumoniae infection in mice. Vaccine 29:5731-5739.
Prabakaran, M., S.R. Kumar, K.V. Raj, X. Wu, F. He, J. Zhou, and J. Kwang. 2014. Cross-protective efficacy of baculovirus displayed hemagglutinin against highly pathogenic influenza H7 subtypes. Antiviral research 109:149-159.
Pun, P.B., A.A. Bhat, T. Mohan, S. Kulkarni, R. Paranjape, and D.N. Rao. 2009. Intranasal administration of peptide antigens of HIV with mucosal adjuvant CpG ODN coentrapped in microparticles enhances the mucosal and systemic immune responses. International immunopharmacology 9:468-477.
Quinones-Parra, S., E. Grant, L. Loh, T.H. Nguyen, K.A. Campbell, S.Y. Tong, A. Miller, P.C. Doherty, D. Vijaykrishna, J. Rossjohn, S. Gras, and K. Kedzierska. 2014. Preexisting CD8+ T-cell immunity to the H7N9 influenza A virus varies across ethnicities. Proceedings of the National Academy of Sciences of the United States of America 111:1049-1054.
Ramos, H.C., M. Rumbo, and J.C. Sirard. 2004. Bacterial flagellins: mediators of pathogenicity and host immune responses in mucosa. Trends in microbiology 12:509-517.
Rescigno, M., M. Urbano, B. Valzasina, M. Francolini, G. Rotta, R. Bonasio, F. Granucci, J.P. Kraehenbuhl, and P. Ricciardi-Castagnoli. 2001. Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria. Nature immunology 2:361-367.
Sakai, K., Y. Ami, M. Tahara, T. Kubota, M. Anraku, M. Abe, N. Nakajima, T. Sekizuka, K. Shirato, Y. Suzaki, A. Ainai, Y. Nakatsu, K. Kanou, K. Nakamura, T. Suzuki, K. Komase, E. Nobusawa, K. Maenaka, M. Kuroda, H. Hasegawa, Y. Kawaoka, M. Tashiro, and M. Takeda. 2014. The host protease TMPRSS2 plays a major role in in vivo replication of emerging H7N9 and seasonal influenza viruses. Journal of virology 88:5608-5616.
Sasaki, S., K. Hamajima, J. Fukushima, A. Ihata, N. Ishii, I. Gorai, F. Hirahara, H. Mohri, and K. Okuda. 1998. Comparison of intranasal and intramuscular immunization against human immunodeficiency virus type 1 with a DNA-monophosphoryl lipid A adjuvant vaccine. Infection and immunity 66:823-826.
Schulte, S., G.K. Sukhova, and P. Libby. 2008. Genetically programmed biases in Th1 and Th2 immune responses modulate atherogenesis. The American journal of pathology 172:1500-1508.
Sharma, R., U. Agrawal, N. Mody, and S.P. Vyas. 2015. Polymer nanotechnology based approaches in mucosal vaccine delivery: challenges and opportunities. Biotechnology advances 33:64-79.
Shi, W., Y.H. Li, F. Liu, J.Y. Yang, D.H. Zhou, Y.Q. Chen, Y. Zhang, Y. Yang, B.X. He, C. Han, M.W. Fan, and H.M. Yan. 2012. Flagellin enhances saliva IgA response and protection of anti-caries DNA vaccine. Journal of dental research 91:249-254.
Sierro, F., B. Dubois, A. Coste, D. Kaiserlian, J.P. Kraehenbuhl, and J.C. Sirard. 2001. Flagellin stimulation of intestinal epithelial cells triggers CCL20-mediated migration of dendritic cells. Proceedings of the National Academy of Sciences of the United States of America 98:13722-13727.
Singh, B., J.A. Schwartz, C. Sandrock, S.M. Bellemore, and E. Nikoopour. 2013. Modulation of autoimmune diseases by interleukin (IL)-17 producing regulatory T helper (Th17) cells. The Indian journal of medical research 138:591-594.

Smith, G.E., D.C. Flyer, R. Raghunandan, Y. Liu, Z. Wei, Y. Wu, E. Kpamegan, D. Courbron, L.F. Fries, 3rd, and G.M. Glenn. 2013. Development of influenza H7N9 virus like particle (VLP) vaccine: homologous A/Anhui/1/2013 (H7N9) protection and heterologous A/chicken/Jalisco/CPA1/2012 (H7N3) cross-protection in vaccinated mice challenged with H7N9 virus. Vaccine 31:4305-4313.
Strindelius, L., M. Filler, and I. Sjoholm. 2004. Mucosal immunization with purified flagellin from Salmonella induces systemic and mucosal immune responses in C3H/HeJ mice. Vaccine 22:3797-3808.
Tang, L.H., J.H. Lim, L.F. Kuah, and Y.F. Lau. 2014. Complete protection against lethal challenge of novel H7N9 virus with heterologous inactivated H7 vaccine in mice. Vaccine 32:5375-5378.
Taylor, D.N., J.J. Treanor, C. Strout, C. Johnson, T. Fitzgerald, U. Kavita, K. Ozer, L. Tussey, and A. Shaw. 2011. Induction of a potent immune response in the elderly using the TLR-5 agonist, flagellin, with a recombinant hemagglutinin influenza-flagellin fusion vaccine (VAX125, STF2.HA1 SI). Vaccine 29:4897-4902.
van de Sandt, C.E., J.H. Kreijtz, G. de Mutsert, M.M. Geelhoed-Mieras, M.L. Hillaire, S.E. Vogelzang-van Trierum, A.D. Osterhaus, R.A. Fouchier, and G.F. Rimmelzwaan. 2014. Human cytotoxic T lymphocytes directed to seasonal influenza A viruses cross-react with the newly emerging H7N9 virus. Journal of virology 88:1684-1693.
Wang, B.Z., R. Xu, F.S. Quan, S.M. Kang, L. Wang, and R.W. Compans. 2010. Intranasal immunization with influenza VLPs incorporating membrane-anchored flagellin induces strong heterosubtypic protection. PloS one 5:e13972.
Wang, Y., Z. Dai, H. Cheng, Z. Liu, Z. Pan, W. Deng, T. Gao, X. Li, Y. Yao, J. Ren, and Y. Xue. 2013. Towards a better understanding of the novel avian-origin H7N9 influenza A virus in China. Scientific reports 3:2318.
Wong, J.P., E.G. Saravolac, D. Sabuda, H.B. Levy, and M. Kende. 1995. Prophylactic and therapeutic efficacies of poly(IC.LC) against respiratory influenza A virus infection in mice. Antimicrobial agents and chemotherapy 39:2574-2576.
Woodrow, K.A., K.M. Bennett, and D.D. Lo. 2012. Mucosal vaccine design and delivery. Annual review of biomedical engineering 14:17-46.
Wu, C.Y., C.Y. Chang, H.H. Ma, C.W. Wang, Y.T. Chen, P.W. Hsiao, C.C. Chang, C.H. Chan, C.C. Liu, and J.R. Chen. 2014. Squalene-adjuvanted H7N9 virus vaccine induces robust humoral immune response against H7N9 and H7N7 viruses. Vaccine 32:4485-4494.
Xiong, X., S.R. Martin, L.F. Haire, S.A. Wharton, R.S. Daniels, M.S. Bennett, J.W. McCauley, P.J. Collins, P.A. Walker, J.J. Skehel, and S.J. Gamblin. 2013. Receptor binding by an H7N9 influenza virus from humans. Nature 499:496-499.
Xu, J., S. Lu, H. Wang, and C. Chen. 2013. Reducing exposure to avian influenza H7N9. Lancet 381:1815-1816.
Yang, Q.B., M. Martin, S.M. Michalek, and J. Katz. 2002. Mechanisms of monophosphoryl lipid A augmentation of host responses to recombinant HagB from Porphyromonas gingivalis. Infection and immunity 70:3557-3565.
Yin, Y., T. Qin, X. Wang, J. Lin, Q. Yu, and Q. Yang. 2015. CpG DNA assists the whole inactivated H9N2 influenza virus in crossing the intestinal epithelial barriers via transepithelial uptake of dendritic cell dendrites. Mucosal immunology 8:799-814.
Zhang, P., J.P. Lewis, S.M. Michalek, and J. Katz. 2007. Role of CD80 and CD86 in host immune responses to the recombinant hemagglutinin domain of Porphyromonas gingivalis gingipain and in the adjuvanticity of cholera toxin B and monophosphoryl lipid A. Vaccine 25:6201-6210.
Zhang, Q., J. Shi, G. Deng, J. Guo, X. Zeng, X. He, H. Kong, C. Gu, X. Li, J. Liu, G. Wang, Y. Chen, L. Liu, L. Liang, Y. Li, J. Fan, J. Wang, W. Li, L. Guan, Q. Li, H. Yang, P. Chen, L. Jiang, Y. Guan, X. Xin, Y. Jiang, G. Tian, X. Wang, C. Qiao, C. Li, Z. Bu, and H. Chen. 2013. H7N9 influenza viruses are transmissible in ferrets by respiratory droplet. Science 341:410-414.
Zhang, W.W., and G. Matlashewski. 2008. Immunization with a Toll-like receptor 7 and/or 8 agonist vaccine adjuvant increases protective immunity against Leishmania major in BALB/c mice. Infection and immunity 76:3777-3783.
Zhao, K., H. Wang, and C. Wu. 2011. The immune responses of HLA-A*0201 restricted SARS-CoV S peptide-specific CD8(+) T cells are augmented in varying degrees by CpG ODN, PolyI:C and R848. Vaccine 29:6670-6678.
Zhou, Z.X., and L. Sun. 2015. Immune effects of R848: evidences that suggest an essential role of TLR7/8-induced, Myd88- and NF-kappaB-dependent signaling in the antiviral immunity of Japanese flounder (Paralichthys olivaceus). Developmental and comparative immunology 49:113-120.
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

1. 二氫葉酸還原脢之核酸干擾與未摺疊性蛋白反應對CHO與NS0細胞表現重組蛋白之研究
2. 利用哺乳動物細胞表現嚴重急性呼吸道症候群冠狀病毒之棘蛋白片段
3. 利用體外親和力成熟化及噬菌體表現系統選殖日本腦炎病毒高親和力抗體珠
4. 含醣胺素結合區及RGD序列之人工細胞外間質蛋白
5. 比較SV40驅動和IRES驅動二氫葉酸還原酶的載體在CHO細胞工程中基因放大的差異性
6. 日本腦炎病毒prM與E蛋白N-醣化作用之研究
7. 利用桿狀病毒表現流感病毒血球凝集素與似病毒顆粒之研究
8. 構築與表現人類流感與禽流感之嵌合性似病毒顆粒
9. Dihydrofolate Reductase-Mir-30 RNA based Interference for chimeric antibody expression in CHO cells
10. Interactions of Influenza Hemagglutinin Proteins with Mouse Bone Marrow-Derived Dendritic Cells
11. 感染性選殖株衍生之登革第四型疫苗病毒於MRC-5細胞產生適應性突變點Glu345Lys之研究
12. Producing Recombinant Hemagglutinin Protein of H5N1 Avian Influenza Viruses in Chinese Hamster Overy (CHO) Cells Using Dihydrofolate Reductase and Dihydrofolate Reductase-RNA Interference
13. 利用DNA/重組腺病毒載體與H5N1血球凝集素蛋白進行heterologous prime-boost免疫法並探討其免疫反應增強的現象
14. 表達呼吸道融合病毒融合蛋白及其特性分析
15. 以DNA-prime和似病毒顆粒-booster方法來研發免疫聚焦性H5HA流感疫苗
 
* *