帳號:guest(18.118.162.201)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):吳海寶
作者(外文):Wu, Hai-Bao
論文名稱(中文):致病性鉤狀螺絲體毒素因子LipL32與纖維連接蛋白相互作用與分子結構之研究
論文名稱(外文):The Structural and Functional Studies of the Interaction between LipL32, a Viral Factor of Pathogenic Leptospira, and Fibronectin
指導教授(中文):孫玉珠
指導教授(外文):Sun, Yuh-Ju
口試委員(中文):呂平江
楊立威
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生物資訊與結構生物研究所
學號:102080485
出版年(民國):103
畢業學年度:102
語文別:英文
論文頁數:59
中文關鍵詞:螺旋鉤狀體LipL32纖維連接蛋白肝素結合域複合物晶體
外文關鍵詞:LeptospiraLipL32FN1213heparin-binding domaincomplex
相關次數:
  • 推薦推薦:0
  • 點閱點閱:24
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
鉤狀螺旋體屬的致病螺旋體分佈廣泛,經常能引起一種嚴重的人畜共通的鉤狀螺旋體病。儘管最近幾年,隨著對致病螺旋菌體研究的深入,人們對於致病螺旋體感染宿主的致病機理愈加愈清晰。但是,對於其一毒素因子LipL32脂蛋白的研究尚不完整。LipL32是一種在致病螺旋體外膜上大量存在的脂蛋白,當在它的lipobox上發生脂化後,便會轉移到菌體的膜上進而發揮毒素因子的作用。致病螺旋體膜外蛋白與宿主的細胞外基質組分(ECM: extracellular matrix molecules)的接觸會導致致病螺旋體病的發生。纖維連接蛋白(Fibronectin)是細胞外基質組分中重要的組成部分之一,也是病菌與宿主發生相互作用的媒介之一。由我們實驗室之前的研究,通過stains-all CD, ELISA(Enzyme-Linked Immunosorbent Assay)實驗證明第一型纖維連接蛋白的肝素結合區域 (F30) 能結合LipL32,而且鈣離子能對F30結合LipL32進行調節。第三型纖維連接蛋白12-13片段(FN1213)也具有重要的肝素結合域。通過分子結合模擬的方法預測,經由FN1213蛋白的表面分佈的正電荷(R98/R99/R101/R115/K117/R146),能與LipL32蛋白表面D-loop(142DDDDD146, D146/D149)分佈的負電荷相互作用,LipL32可與FN1213 結合成一可能的複合物。在這次實驗中,我們利用Native-PAGE,化學交連反應(chemical cross linking)和等溫滴定量熱議(ITC)等實驗檢試LipL32與FN1213相互作用的可能,發現LipL32與FN1213相互作用相互作用力極其微弱,以至於很難形成複合物晶體。於複合物晶體成長實驗,我們只得到單獨FN1213的晶體而非LipL32與FN1213複合物晶體。通過這個研究,我們提供生化實驗討論LipL32與FN1213相互作用的研究,希望有利於進一步瞭解這兩個蛋白質的特性以及鉤狀螺旋體感染宿主的機制。
Spirochetes of the genus leptospira often cause, with worldwide distribution, the serious zoonotic disease leptospirosis. There have been numerous advances in the understanding of the molecular pathogenesis of the infection the host, yet the mechanism of a viral factor of leptospira, LipL32, remains unclear. LipL32 is a lipoprotein and abundant on the outer membrane of leptospira. Leptospirosis occurs through the leptospira outer membrane proteins including LipL32 interact with the extracellular matrix (ECM). Fibronectin (FN) is a prominent component of the extracellular matrix molecules with which bacterial cell surface proteins interact. The binding of F30 to LipL32 has been observed by stains-all CD and enzyme-linked immunosorbent assay experiments. And Ca2+ can modulate fibronectin binding to LipL32. The heparin-binding site, fibronectin type III repeats 12-13 (FN1213), contains FN12 and FN13 in which takes a clump of positively charged residues. The structural analyses of LipL32 indicate that it possesses a large area of negative electricity. We have predicated the possible interaction of LipL32-FN1213 complex by a docking program. We provide several biochemistry methods such as Native-PAGE, chemical cross linking and ITC (Isothermal Titration Calorimetry) experiments to study the protein-protein interaction using LipL32 and FN1213 as an example. There may be indeed interaction between LipL32 and FN1213 by non-covalent hydrophobic interaction through the D-loop (142DDDDD146, D146/D149) of LipL32 and the positive region (R98/R99/R101/R115/K117/R146) of FN13. From this study we suggest the interaction between LipL32 and FN1213 should be week and non-specific hydrophilic interactions.
Abstract I
中文摘要 II
Acknowledgements III
Chapter 1 Introduction 1
Chapter 2 Materials and Methods 4
2.1 Expression and purification 4
2.2 Molecular docking 5
2.3 Matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry 6
2.4 Circular dichroism spectroscopy 6
2.5 Protein decalcification 7
2.6 SDS-PAGE and native-PAGE 7
2.7 N-termial aminal acid sequencing 8
2.8 Size exclusion chromatography (SEC) 8
2.9 Chemical cross linking 9
2.10 Isothermal Titration Calorimetry (ITC) 10
2.11 Crystallization 10
2.12 X-ray data collection 11
2.13 Structure determination and refinement 11
Chapter 3 Results and Discussion 12
3.1 Characterization of LipL32 and FN1213 12
3.2 Bioinformatic analyses of LipL32 and FN1213 13
3.3 The molecular wight of LipL32 and FN1213 15
3.4 The secondary structures of LipL32 and FN1213 16
3.5 LipL32 and FN1213 interaction confirmed by Native-PAGE 17
3.6 LipL32 and FN1213 interaction confirmed by Isothermal Titration Calorimetry (ITC) 20
3.7 LipL32 and FN1213 interaction confirmed by chemical cross linking and SEC 21
3.8 Crystallization, X-ray data collection and structure determination 23
3.9 FN1213 structure 24
Chapter 4 Conclusion 26
Tables and Figures 28
Reference 57



[1] Centers for Disease Control, http://www.cdc.gov/ncidod/dbmd/diseaseinfo/leptospirosis_t.htm, 1998.
[2] Zuerner RL, Herrmann JL, Saint Girons I. Comparison of genetic maps for two Leptospira interrogans serovars provides evidence for two chromosomes and intraspecies heterogeneity. Journal of bacteriology. 1993;175:5445-51.
[3] Haake DA, Chao G, Zuerner RL, Barnett JK, Barnett D, Mazel M, et al. The leptospiral major outer membrane protein LipL32 is a lipoprotein expressed during mammalian infection. Infection and immunity. 2000;68:2276-85.
[4] Picardeau M, Bulach DM, Bouchier C, Zuerner RL, Zidane N, Wilson PJ, et al. Genome Sequence of the Saprophyte Leptospira biflexa Provides Insights into the Evolution of Leptospira and the Pathogenesis of Leptospirosis. Plos One. 2008;3.
[5] Zuerner RL, Knudtson W, Bolin CA, Trueba G. Characterization of Outer-Membrane and Secreted Proteins of Leptospira-Interrogans Serovar Pomona. Microb Pathogenesis. 1991;10:311-22.
[6] Cullen PA, Cordwell SJ, Bulach DM, Haake DA, Adler B. Global analysis of outer membrane proteins from Leptospira interrogans serovar Lai. Infection and immunity. 2002;70:2311-8.
[7] Cullen PA, Xu XY, Matsunaga J, Sanchez Y, Ko AI, Haake DA, et al. Surfaceome of Leptospira spp. Infection and immunity. 2005;73:4853-63.
[8] Guerreiro H, Croda J, Flannery B, Mazel M, Matsunaga J, Reis MG, et al. Leptospiral proteins recognized during the humoral immune response to leptospirosis in humans. Infection and immunity. 2001;69:4958-68.
[9] Haake DA. Spirochaetal lipoproteins and pathogenesis. Microbiol-Uk. 2000;146:1491-504.
[10] Tseng CL, Leng CH. Influence of medium components on the expression of recombinant lipoproteins in Escherichia coli. Applied microbiology and biotechnology. 2012;93:1539-52.
[11] Pinne M, Haake DA. LipL32 Is a Subsurface Lipoprotein of Leptospira interrogans: Presentation of New Data and Reevaluation of Previous Studies. Plos One. 2013;8.
[12] Hoke DE, Egan S, Cullen PA, Adler B. LipL32 is an extracellular matrix-interacting protein of Leptospira spp. and Pseudoalteromonas tunicata. Infection and immunity. 2008;76:2063-9.
[13] Hauk P, Macedo F, Romero EC, Vasconcellos SA, de Morais ZM, Barbosa AS, et al. In LipL32, the major leptospiral lipoprotein, the C terminus is the primary immunogenic domain and mediates interaction with collagen IV and plasma fibronectin. Infection and immunity. 2008;76:2642-50.
[14] Hauk P, Macedo F, Romero EC, Vasconcellos SA, de Morais ZM, Barbosa AS, et al. In LipL32, the major leptospiral lipoprotein, the C terminus is the primary immunogenic domain and mediates interaction with collagen wand plasma fibronectin. Infection and immunity. 2008;76:2642-50.
[15] Hauk P, Guzzo CR, Ramos HR, Ho PL, Farah CS. Structure and Calcium-Binding Activity of LipL32, the Major Surface Antigen of Pathogenic Leptospira sp. J Mol Biol. 2009;390:722-36.
[16] Patti JM, Allen BL, Mcgavin MJ, Hook M. Mscramm-Mediated Adherence of Microorganisms to Host Tissues. Annu Rev Microbiol. 1994;48:585-617.
[17] Yang CW. Leptospirosis renal disease: Understanding the initiation by Toll-like receptors. Kidney Int. 2007;72:918-25.
[18] Yang CW, Wu MS, Pan MJ, Hsieh WJ, Vandewalle A, Huang CC. The Leptospira outer membrane protein LipL32 induces tubulointerstitial nephritis-mediated gene expression in mouse proximal tubule cells. J Am Soc Nephrol. 2002;13:2037-45.
[19] Oliver N, Newby RF, Furcht LT, Bourgeois S. Regulation of Fibronectin Biosynthesis by Glucocorticoids in Human Fibro-Sarcoma Cells and Normal Fibroblasts. Cell. 1983;33:287-96.
[20] Couchman JR, Austria MR, Woods A. Fibronectin-cell interactions. The Journal of investigative dermatology. 1990;94:7S-14S.
[21] Hynes RO. Fibronectins. Springer-Verlag, New York. 1990.
[22] Hynes RO, Schwarzbauer JE, Tamkun JW. Fibronectin: a versatile gene for a versatile protein. Ciba Foundation symposium. 1984;108:75-92.
[23] Mosher DF. Fibronectin. Academic Press, San Diego, CA. 1989.
[24] Ruoslahti E. Fibronectin in cell adhesion and invasion. Cancer metastasis reviews. 1984;3:43-51.
[25] Schwarzbauer JE. Fibronectin: from gene to protein. Current opinion in cell biology. 1991;3:786-91.
[26] Ruoslahti E. Fibronectin and Its Receptors. Annu Rev Biochem. 1988;57:375-413.
[27] Leahy DJ, Hendrickson WA, Aukhil I, Erickson HP. Structure of a fibronectin type III domain from tenascin phased by MAD analysis of the selenomethionyl protein. Science. 1992;258:987-91.
[28] Leahy DJ, Aukhil I, Erickson HP. 2.0 A crystal structure of a four-domain segment of human fibronectin encompassing the RGD loop and synergy region. Cell. 1996;84:155-64.
[29] Main AL, Harvey TS, Baron M, Boyd J, Campbell ID. The three-dimensional structure of the tenth type III module of fibronectin: an insight into RGD-mediated interactions. Cell. 1992;71:671-8.
[30] Dickinson CD, Veerapandian B, Dai XP, Hamlin RC, Xuong NH, Ruoslahti E, et al. Crystal structure of the tenth type III cell adhesion module of human fibronectin. J Mol Biol. 1994;236:1079-92.
[31] Sharma A, Askari JA, Humphries MJ, Jones EY, Stuart DI. Crystal structure of a heparin- and integrin-binding segment of human fibronectin. The EMBO journal. 1999;18:1468-79.
[32] Benecky MJ, Kolvenbach CG, Amrani DL, Mosesson MW. Evidence That Binding to the Carboxyl-Terminal Heparin-Binding Domain (Hep-Ii) Dominates the Interaction between Plasma Fibronectin and Heparin. Biochemistry-Us. 1988;27:7565-71.
[33] Barkalow FJB, Schwarzbauer JE. Localization of the Major Heparin-Binding Site in Fibronectin. J Biol Chem. 1991;266:7812-8.
[34] Ingham KC, Brew SA, Atha DH. Interaction of Heparin with Fibronectin and Isolated Fibronectin Domains. Biochem J. 1990;272:605-11.
[35] Barbosa AS, Abreu PAE, Neves FO, Atzingen MV, Watanabe MM, Vieira ML, et al. Newly identified leptospiral adhesin mediates attachment to laminin. Infection and immunity. 2006;74:6356-64.
[36] Vivian JP, Beddoe T, McAlister AD, Wilce MCJ, Zaker-Tabrizi L, Troy S, et al. Crystal Structure of LipL32, the Most Abundant Surface Protein of Pathogenic Leptospira spp. J Mol Biol. 2009;387:1229-38.
[37] Murray GL, Srikram A, Hoke DE, Wunder EA, Henry R, Lo M, et al. Major Surface Protein LipL32 Is Not Required for Either Acute or Chronic Infection with Leptospira interrogans. Infection and immunity. 2009;77:952-8.
[38] Cheng HC, Abdel-Ghany M, Pauli BU. A novel consensus motif in fibronectin mediates dipeptidyl peptidase IV adhesion and metastasis. J Biol Chem. 2003;278:24600-7.
[39] Sharma A, Askari JA, Humphries MJ, Jones EY, Stuart DI. Crystal structure of a heparin- and integrin-binding segment of human fibronectin. Embo Journal. 1999;18:1468-79.
[40] Davis BJ. Disc Electrophoresis .2. Method and Application to Human Serum Proteins. Ann Ny Acad Sci. 1964;121:404-&.
[41] Lin YP, Raman R, Sharma Y, Chang YF. Calcium binds to leptospiral immunoglobulin-like protein, LigB, and modulates fibronectin binding. J Biol Chem. 2008;283:25140-9.
[42] Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227:680-5.
[43] Tseng CL, Leng CH. Influence of medium components on the expression of recombinant lipoproteins in Escherichia coli. Applied microbiology and biotechnology. 2012;93:1539-52.
[44] M. Kapoor. How to cross-link proteins.
[45] Yamaguchi S, Kamikubo H, Shimizu N, Yamazaki Y, Imamoto Y, Kataoka M. Preparation of large crystals of photoactive yellow protein for neutron diffraction and high resolution crystal structure analysis. Photochemistry and photobiology. 2007;83:336-8.
[46] Otwinowski Z, Minor W. Processing of X-ray diffraction data collected in oscillation mode. Method Enzymol. 1997;276:307-26.
[47] Vagin A, Teplyakov A. MOLREP: an automated program for molecular replacement. J Appl Crystallogr. 1997;30:1022-5.
[48] Mccoy AJ, Grosse-Kunstleve RW, Adams PD, Winn MD, Storoni LC, Read RJ. Phaser crystallographic software. J Appl Crystallogr. 2007;40:658-74.
[49] Afonine PV, Grosse-Kunstleve RW, Echols N, Headd JJ, Moriarty NW, Mustyakimov M, et al. Towards automated crystallographic structure refinement with phenix.refine. Acta Crystallogr D. 2012;68:352-67.
[50] Emsley P, Cowtan K. Coot: model-building tools for molecular graphics. Acta Crystallogr D. 2004;60:2126-32.
[51] Tong L, Qian CE, Davidson W, Massariol MJ, Bonneau PR, Cordingley MG, et al. Experiences from the structure determination of human cytomegalovirus protease. Acta Crystallogr D. 1997;53:682-90.
[52] Murray GL, Srikram A, Hoke DE, Wunder EA, Jr., Henry R, Lo M, et al. Major surface protein LipL32 is not required for either acute or chronic infection with Leptospira interrogans. Infection and immunity. 2009;77:952-8.
[53] Tung JY, Yang CW, Chou SW, Lin CC, Sun YJ. Calcium Binds to LipL32, a Lipoprotein from Pathogenic Leptospira, and Modulates Fibronectin Binding. J Biol Chem. 2010;285:3245-52.
[54] Comeau SR, Gatchell DW, Vajda S, Camacho CJ. ClusPro: An automated docking and discrimination method for the prediction of protein complexes. Bioinformatics. 2004;20:45-50.
[55] Caprioli RM, Farmer TB, Gile J. Molecular imaging of biological samples: Localization of peptides and proteins using MALDI-TOF MS. Anal Chem. 1997;69:4751-60.
[56] Bjellqvist B, Hughes GJ, Pasquali C, Paquet N, Ravier F, Sanchez JC, et al. The Focusing Positions of Polypeptides in Immobilized Ph Gradients Can Be Predicted from Their Amino-Acid-Sequences. Electrophoresis. 1993;14:1023-31.
[57] Krissinel E, Henrick K. Inference of macromolecular assemblies from crystalline state. J Mol Biol. 2007;372:774-97.
[58] Lin MH, Chang YC, Hsiao CD, Huang SH, Wang MS, Ko YC, et al. LipL41, a hemin binding protein from Leptospira santarosai serovar Shermani. Plos One. 2013;8:e83246.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *