帳號:guest(3.133.113.72)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):李唯丹
作者(外文):Lee, Victor Daniel
論文名稱(中文):線蟲中肌凝蛋白-V同源蛋白HUM-2之特性
論文名稱(外文):Characterization of HUM-2 a myosin-V ortholog in C. elegans
指導教授(中文):王歐力
指導教授(外文):Wagner, Oliver
口試委員(中文):高茂傑
黃兆祺
口試委員(外文):Kao, Mou-Chieh
Hwang, Eric
學位類別:碩士
校院名稱:國立清華大學
系所名稱:分子與細胞生物研究所
學號:102080421
出版年(民國):105
畢業學年度:105
語文別:英文中文
論文頁數:89
中文關鍵詞:運輸蛋白肌凝蛋白
外文關鍵詞:HUM-2myosin-V
相關次數:
  • 推薦推薦:0
  • 點閱點閱:47
  • 評分評分:*****
  • 下載下載:13
  • 收藏收藏:0
過去20年, 線蟲成為模式生物並且頻繁地被用於神經中運輸蛋白 (Kinesins) 和動力蛋白(dynein) 的研究。為了研究線蟲的神經軸突中,以肌動蛋白為基礎 (actin-based) 運動的分子馬達(motors)中,是否存在與肌凝蛋白-V (myosin-V) 的同源蛋白,我們使用以hum-2啟動子驅動螢光蛋白分布的質體 (transcriptional plasmid of hum-2) 觀察能表現跟肌凝蛋白-V (myosin-V) 同源的hum-2蛋白的細胞。因此,我們以線蟲行為配合生物資訊分析HUM-2蛋白來解析肌凝蛋白在神經軸突中運輸的角色。我們使用化學趨向性 (chemotaxis)、咽頭吸吐速度(pumping rate)與存活度分析線蟲行為變化, 以及用分子運動分析來研究神經軸突的運輸變化。實驗結果顯示hum-2基因會在神經中表現, 並且會影響化學趨向性與咽頭吸吐速度,也參與突觸小泡 (synaptic vesicle) 的運輸。
C. elegans have been used as a model organism for studying kinesins and dynein in neurons. In an effort to evaluate whether or not a C. elegans homolog of myosin-V exists, and therefore to gain a better understanding of axonal actin-based motors, a transcriptional fusion of hum-2 (supposedly an orthologue of mammalian myosin-V) has been created to detect its cellular expression. Moreover, initial worm behavioral and bioinformatics analysis have been performed to further characterize the role of this myosin (hum-2) in C. elegans. Online bioinformatics resources revealed similar predicted protein domains in the hum-2 gene when compared with mammalian myosin-V. Further, I performed behavioral analyses like chemotaxis, pumping rate and survival assays in a hum-2 mutant worm that displayed a defect in its chemosensory signaling as well as pumping rate. For the study of axonal transport, I carried out motility analyses and observed UNC-104 in hum-2 RNAi as well as mutant background. Results implicate significant changes in velocity, persistency of movement, total run length, pausing and motor reversals. Deeper kymograph analysis revealed a decrease in UNC-104 activation after a pause. Also, interestingly interaction between motile and non-motile UNC-104 clusters partially rescued UNC-104 activation. Finally, results revealed hum-2 expression in neurons, and its pivotal role in chemosensory signaling, pharynx pumping rate and also synaptic vesicle transport and UNC-104 activation.
Introduction - 7 -
1 Myosin-V - 7 -
1.1 Myosins in C. elegans - 7 -
1.2 Myosin-V Introduction - 7 -
1.3 Myosin-V Structure - 8 -
1.4 Myosin-V functions in neurons - 9 -
2 KIF1A/UNC-104 motor - 10 -
3 Myosin-V and cargo co-transport on microtubules - 11 -
3.1 Overview - 11 -
3.2 Kinesin, dynein and myosin-V cargo adaptors - 12 -
3.3 Bidirectional cargo transport - 13 -
3.3.1 Tug-of-war - 13 -
3.3.2 Explaining the paradox of co-dependence - 14 -
4 Purpose of study - 15 -
Materials and Methods - 17 -
1 Reagents - 17 -
1.1 M9 buffer - 17 -
1.1 Nematode growth medium (NGM) agar plates - 17 -
1.3 LB Medium - 17 -
1.2 Genomic DNA isolation buffer - 18 -
2 Maintenance - 18 -
3 C. elegans strains and plasmids - 18 -
4 C. elegans Mating - 19 -
4.1 Male generation by heat shock - 19 -
4.2 Outcrossing - 20 -
5 Microinjection - 20 -
6 Behavioral analysis - 21 -
6.1 Chemotaxis assay - 21 -
6.2 Survival assay - 22 -
6.3 Pumping rate assay - 22 -
7 Mitochondria and UNC-104 distribution analysis - 22 -
8 Motility analysis - 23 -
Results - 25 -
1 HUM-2/myosin-V homology analysis - 25 -
2 Hum-2 expression pattern - 25 -
3 HUM-2 Behavioral Analysis - 27 -
4 Hum-2 knockdown affects the mitochondrial length in ALM neurons - 27 -
5 Hum-2 knockdown decreases RAB-3 anterograde velocity in ALM - 28 -
6 HUM-2 increases RAB-3 labeled vesicles activation from its paused state - 29 -
7 HUM-2 affects UNC-104 motility parameters in ALM - 29 -
8 HUM-2 increases UNC-104 activation from its paused state - 30 -
9 UNC-104 non-motile clusters rescue anterograde activation in hum-2(ok596) - 31 -
10 HUM-2 affects UNC-104 distribution - 32 -
11 HUM-2 affects small aggregates of UNC-104 more than big aggregates of UNC-104 - 32 -
Discussion - 35 -
Hum-2 expression pattern - 35 -
HUM-2 behavioral and organelle analysis - 36 -
HUM-2 and its effect on RAB-3 labeled Synaptic Vesicles transport - 37 -
HUM-2 and its effect on UNC-104 and axonal transport - 39 -
HUM-2 affects small cargo more than large cargo transport - 42 -
HUM-2’s role in the paradox of co-dependence - 43 -
Figures - 45 -
References - 71 -
Appendix - 81 -
Ali, M.Y. et al., 2007. Myosin Va maneuvers through actin intersections and diffuses along microtubules. Proceedings of the National Academy of Sciences of the United States of America, 104(11), pp.4332–6. Available at: http://www.pnas.org/content/104/11/4332.long.
Ali, M.Y. et al., 2008. Myosin V and Kinesin act as tethers to enhance each others’ processivity. Proceedings of the National Academy of Sciences of the United States of America, 105(12), pp.4691–4696.
Aydar, E. & Palmer, C.P., 2009. Polycystic kidney disease channel and synaptotagmin homologues play roles in schizosaccharomyces pombe cell wall synthesis/Repair and membrane protein trafficking. Journal of Membrane Biology, 229(3), pp.141–152.
Barkus, R. V et al., 2008. Identification of an axonal kinesin-3 motor for fast anterograde vesicle transport that facilitates retrograde transport of neuropeptides. Molecular biology of the cell, 19(1), pp.274–83.
Berger, F. et al., 2011. Co-operative transport by molecular motors. Biochemical Society transactions, 39(5), pp.1211–5. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21936791.
Bittins, C.M. et al., 2010. Dominant-negative myosin Va impairs retrograde but not anterograde axonal transport of large dense core vesicles. Cellular and Molecular Neurobiology, 30(3), pp.369–379.
Bittins, C.M., Eichler, T.W. & Gerdes, H.H., 2009. Expression of the dominant-negative tail of myosin va enhances exocytosis of large dense core vesicles in neurons. Cellular and Molecular Neurobiology, 29(4), pp.597–608.
Carson, J.H. et al., 1997. Translocation of myelin basic protein mRNA in oligodendrocytes requires microtubules and kinesin. Cell Motility and the Cytoskeleton, 38(4), pp.318–328.
Chen, Y. et al., 2013. Myosin Vb gene is associated with schizophrenia in Chinese Han population. Psychiatry Research, 207(1–2), pp.13–18.
Costa, M.C.R. et al., 1999. Brain myosin-V, a calmodulin-carrying myosin, binds to calmodulin- dependent protein kinase II and activates its kinase activity. Journal of Biological Chemistry, 274(22), pp.15811–15819.
Duerr, J.S. et al., 2008. Identification of major classes of cholinergic neurons in the nematode Caenorhabditis elegans. The Journal of comparative neurology, 506(3), pp.398–408. Available at: http://onlinelibrary.wiley.com/doi/10.1002/cne.21551/full\nhttp://www.ncbi.nlm.nih.gov/pubmed/18041778.
Estes, K.A., Szumowski, S.C. & Troemel, E.R., 2011. Non-lytic, actin-based exit of intracellular parasites from c. elegans intestinal cells. PLoS Pathogens, 7(9).
Fishilevich, S. et al., 2016. Genic insights from integrated human proteomics in GeneCards. Database : the journal of biological databases and curation, 2016(0), p.baw030-. Available at: http://database.oxfordjournals.org/content/2016/baw030.full.
Fuxman Bass, J.I. et al., 2014. Transcription factor binding to Caenorhabditis elegans first introns reveals lack of redundancy with gene promoters. Nucleic Acids Research, 42(1), pp.153–162.
Gally, C. et al., 2009. Myosin II regulation during C. elegans embryonic elongation: LET-502/ROCK, MRCK-1 and PAK-1, three kinases with different roles. Development, 136(18), pp.3109–3119. Available at: http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=19675126&retmode=ref&cmd=prlinks\npapers2://publication/doi/10.1242/dev.039412.
Gidon, A. et al., 2012. A Rab11A/Myosin Vb/Rab11-FIP2 Complex Frames Two Late Recycling Steps of Langerin from the ERC to the Plasma Membrane. Traffic, 13(6), pp.815–833.
Goldberg, D.J., 1982. Microinjection into an identified axon to study the mechanism of fast axonal transport. Proceedings of the National Academy of Sciences of the United States of America, 79(15), pp.4818–4822.
Hall, D.H. & Hedgecock, E.M., 1991. Kinesin-related gene unc-104 is required for axonal transport of synaptic vesicles in C. elegans. Cell, 65(5), pp.837–847.
Hancock, W.O., 2014. Bidirectional cargo transport: moving beyond tug of war. Nature Reviews Molecular Cell Biology, 15(9), pp.615–628.
Hasaka, T.P., Myers, K. a & Baas, P.W., 2004. Role of actin filaments in the axonal transport of microtubules. The Journal of neuroscience : the official journal of the Society for Neuroscience, 24(50), pp.11291–11301.
Hirokawa, N., Niwa, S. & Tanaka, Y., 2010. Molecular motors in neurons: transport mechanisms and roles in brain function, development, and disease. Neuron, 68(4), pp.610–638. Available at: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=21092854.
Hoogenraad, C.C. & Akhmanova, A., 2016. Bicaudal D Family of Motor Adaptors: Linking Dynein Motility to Cargo Binding. Trends in Cell Biology, 26(5), pp.327–340.
Horgan, C.P. & McCaffrey, M.W., 2011. Rab GTPases and microtubule motors. Biochemical Society Transactions, 39(5), pp.1202–1206.
Jin, Y. et al., 2011. Myosin V transports secretory vesicles via a Rab GTPase cascade and interaction with the exocyst complex. Developmental Cell, 21(6), pp.1156–1170.
Kapitein, L.C. et al., 2013. Myosin-V opposes microtubule-based cargo transport and drives directional motility on cortical actin. Current Biology, 23(9), pp.828–834.
Kelleher, J.F. et al., 2000. Myosin VI is required for asymmetric segregation of cellular components during C. elegans spermatogenesis. Current Biology, 10(23), pp.1489–1494.
Kern, J. V. et al., 2013. The kinesin-3, Unc-104 regulates dendrite morphogenesis and synaptic development in Drosophila. Genetics, 195(1), pp.59–72.
Kevenaar, J.T. et al., 2016. Kinesin-Binding Protein Controls Microtubule Dynamics and Cargo Trafficking by Regulating Kinesin Motor Activity. Current Biology, 26(7), pp.849–861.
Klebe, S. et al., 2012. KIF1A missense mutations in SPG30, an autosomal recessive spastic paraplegia: distinct phenotypes according to the nature of the mutations. European Journal of Human Genetics, 20(November 2011), pp.645–649.
Klopfenstein, D.R. et al., 2002. Role of phosphatidylinositol(4,5)bisphosphate organization in membrane transport by the Unc104 kinesin motor. Cell, 109(3), pp.347–358.
Klopfenstein, D.R. & Vale, R.D., 2004. The lipid binding pleckstrin homology domain in UNC-104 kinesin is necessary for synaptic vesicle transport in Caenorhabditis elegans. Molecular biology of the cell, 15(8), pp.3729–39. Available at: http://www.molbiolcell.org.eresources.shef.ac.uk/content/15/8/3729.
Korobova, F. & Svitkina, T., 2010. Molecular Architecture of Synaptic Actin Cytoskeleton in Hippocampal Neurons Reveals a Mechanism of Dendritic Spine Morphogenesis. Molecular Biology of the Cell, 21, pp.165–176.
Kumar, J. et al., 2010. The Caenorhabditis elegans kinesin-3 motor UNC-104/KIF1A is degraded upon loss of specific binding to cargo. PLoS Genetics, 6(11).
Lapierre, L.A. et al., 2001. Myosin vb is associated with plasma membrane recycling systems. Molecular biology of the cell, 12(6), pp.1843–1857.
Lewis, A.K. & Bridgman, P.C., 1992. Nerve growth cone lamellipodia contain two populations of actin filaments that differ in organization and polarity. Journal of Cell Biology, 119(5), pp.1219–1244.
Lindsay, A.J. et al., 2013. Identification and characterization of multiple novel Rab-myosin Va interactions. Molecular biology of the cell, 24(21), pp.3420–34. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3814135&tool=pmcentrez&rendertype=abstract.
Lipka, J. et al., 2016. Microtubule-binding protein doublecortin-like kinase 1 (DCLK1) guides kinesin-3-mediated cargo transport to dendrites. The EMBO Journal, 35(3), pp.302–318.
Lisé, M.F. et al., 2006. Involvement of myosin Vb in glutamate receptor trafficking. Journal of Biological Chemistry, 281(6), pp.3669–3678.
Liu, Y. et al., 2013. Myosin Vb controls biogenesis of post-Golgi Rab10 carriers during axon development. Nature communications, 4(May), p.2005. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23770993.
Lundquist, E. a et al., 1998. UNC-115, a conserved protein with predicted LIM and actin-binding domains, mediates axon guidance in C. elegans. Neuron, 21(2), pp.385–392.
Lupas, a, Van Dyke, M. & Stock, J., 1991. Predicting coiled coils from protein sequences. Science (New York, N.Y.), 252(5010), pp.1162–4. Available at: http://www.ncbi.nlm.nih.gov/pubmed/2031185.
MacQueen, a J. et al., 2005. ACT-5 is an essential Caenorhabditis elegans actin required for intestinal microvilli formation. Molecular biology of the cell, 16(7), pp.3247–59. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1165408&tool=pmcentrez&rendertype=abstract.
Maeder, C.I. et al., 2014. In vivo neuron-wide analysis of synaptic vesicle precursor trafficking. Traffic, 15(3), pp.273–291.
Mahoney, T.R. et al., 2006. Regulation of synaptic transmission by RAB-3 and RAB-27 in Caenorhabditis elegans. Molecular biology of the cell, 17(6), pp.2617–25. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1474797&tool=pmcentrez&rendertype=abstract.
Margie, O., Palmer, C. & Chin-Sang, I., 2013. C. elegans chemotaxis assay. Journal of visualized experiments : JoVE, (74), p.e50069. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23644543.
Martin, M. et al., 1999. Cytoplasmic Dynein, the Dynactin Complex, and Kinesin Are Interdependent and Essential for Fast Axonal Transport. Molecular Biology of the Cell, 10(11), pp.3717–3728. Available at: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC25669/\nhttp://www.ncbi.nlm.nih.gov/pmc/articles/PMC25669/pdf/mk003717.pdf.
Mermall, V. et al., 2005. Drosophila myosin V is required for larval development and spermatid individualization. Developmental Biology, 286(1), pp.238–255.
Miller, K.E. & Sheetz, M.P., 2000. Characterization of myosin V binding to brain vesicles. Journal of Biological Chemistry, 275(4), pp.2598–2606.
Müller, M.J.I. et al., 2008. Tug-of-war as a cooperative mechanism for bidirectional cargo transport by molecular motors. Proc. Natl. Acad. Sci. USA, 105(12), pp.4609–14.
Nascimento, A.A. et al., 1996. Enzymatic characterization and functional domain mapping of brain myosin-V. The Journal of biological chemistry, 271(29), pp.17561–17569.
Niwa, S. et al., 2016. Autoinhibition of a Neuronal Kinesin UNC-104/KIF1A Regulates the Size and Density of Synapses. Cell Reports.
Nonet, M.L. et al., 1997. Caenorhabditis elegans rab-3 mutant synapses exhibit impaired function and are partially depleted of vesicles. The Journal of Neuroscience, 17(21), pp.8061–8073.
Otsuka, A.J. et al., 1991. The C. elegans unc-104 4 gene encodes a putative kinesin heavy chain-like protein. Neuron, 6(1), pp.113–122.
Pastural, E. et al., 1997. Griscelli disease maps to chromosome 15q21 and is associated with mutations in the myosin-Va gene. Nature genetics, 16(3), pp.289–292.
Pathak, D., Sepp, K.J. & Hollenbeck, P.J., 2010. Evidence that myosin activity opposes microtubule-based axonal transport of mitochondria. The Journal of neuroscience : the official journal of the Society for Neuroscience, 30(26), pp.8984–8992.
Petralia, R.S. et al., 2001. Glutamate receptor targeting in the postsynaptic spine involves mechanisms that are independent of myosin Va. European Journal of Neuroscience, 13(9), pp.1722–1732.
Piekny, A.J. et al., 2003. The Caenorhabditis elegans nonmuscle myosin genes nmy-1 and nmy-2 function as redundant components of the let-502/Rho-binding kinase and mel-11/myosin phosphatase pathway during embryonic morphogenesis. Development (Cambridge, England), 130(23), pp.5695–704. Available at: http://www.ncbi.nlm.nih.gov/pubmed/14522875.
Pilling, A.D. et al., 2006. Kinesin-1 and Dynein are the primary motors for fast transport of mitochondria in Drosophila motor axons. Molecular biology of the cell, 17(4), pp.2057–68. Available at: http://www.molbiolcell.org/content/17/4/2057.full.
Prekeris, R. & Terrian, D.M., 1997. Brain myosin V is a synaptic vesicle-associated motor protein: Evidence for a Ca2+-dependent interaction with the synaptobrevin-synaptophysin complex. Journal of Cell Biology, 137(7), pp.1589–1601.
Purcell, T.J. et al., 2002. Role of the lever arm in the processive stepping of myosin V. Proceedings of the National Academy of Sciences of the United States of America, 99(22), pp.14159–14164.
Raizen, D. et al., 2012. Methods for measuring pharyngeal behaviors. WormBook, pp.1–13. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23255345.
Rivire, J.B. et al., 2011. KIF1A, an axonal transporter of synaptic vesicles, is mutated in hereditary sensory and autonomic neuropathy type 2. American Journal of Human Genetics, 89(2), pp.219–301.
Röder, I.V. et al., 2008. Role of myosin Va in the plasticity of the vertebrate neuromuscular junction in vivo. PLoS ONE, 3(12).
Rogers, S.L. & Gelfand, V.I., 1998. Myosin cooperates with microtubule motors during organelle transport in melanophores. Current biology : CB, 8, pp.161–164.
Roland, J.T., Lapierre, L.A. & Goldenring, J.R., 2009. Alternative splicing in class v myosins determines association with rab10. Journal of Biological Chemistry, 284(2), pp.1213–1223.
Schnell, E. & Nicoll, R.A., 2001. Hippocampal synaptic transmission and plasticity are preserved in myosin Va mutant mice. Journal of neurophysiology, 85(4), pp.1498–501. Available at: http://jn.physiology.org/content/85/4/1498.abstract.
Sklar, P. et al., 2008. Whole-genome association study of bipolar disorder. Molecular Psychiatry, 13(6), pp.558–569. Available at: http://www.nature.com/doifinder/10.1038/sj.mp.4002151.
Sloane, J.A. & Vartanian, T.K., 2007. Myosin Va controls oligodendrocyte morphogenesis and myelination. The Journal of neuroscience : the official journal of the Society for Neuroscience, 27(42), pp.11366–11375.
Soppina, V. et al., 2009. Tug-of-war between dissimilar teams of microtubule motors regulates transport and fission of endosomes. Proceedings of the National Academy of Sciences of the United States of America, 106(46), pp.19381–6. Available at: http://www.pnas.org/content/106/46/19381.full.
Sutphin, G.L. & Kaeberlein, M., 2009. Measuring Caenorhabditis elegans life span on solid media. Journal of visualized experiments : JoVE, (27), pp.1–7.
Takagishi, Y. et al., 2005. Localization of myosin II and V isoforms in cultured rat sympathetic neurones and their potential involvement in presynaptic function. The Journal of physiology, 569(Pt 1), pp.195–208.
Takagishi, Y. et al., 1996. The dilute-lethal (d(l)) gene attacks a Ca2+ store in the dendritic spine of Purkinje cells in mice. Neuroscience Letters, 215(3), pp.169–172.
Takamori, S. et al., 2006. Molecular Anatomy of a Trafficking Organelle. Cell, 127(4), pp.831–846.
Tanaka, M. et al., 2001. Role of Rab3 GDP/GTP exchange protein in synaptic vesicle trafficking at the mouse neuromuscular junction. Molecular biology of the cell, 12(5), pp.1421–1430.
Thierry-Mieg, D. & Thierry-Mieg, J., 2006. AceView: a comprehensive cDNA-supported gene and transcripts annotation. Genome biology, 7 Suppl 1, p.S12.1-14. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1810549&tool=pmcentrez&rendertype=abstract.
Tien, N.W. et al., 2011. Tau/PTL-1 associates with kinesin-3 KIF1A/UNC-104 and affects the motor’s motility characteristics in C. elegans neurons. Neurobiology of Disease, 43(2), pp.495–506.
Trybus, K.M., 2008. Myosin V from head to tail. Cellular and Molecular Life Sciences, 65(9), pp.1378–1389.
Varadi, A. et al., 2003. Kinesin I and cytoplasmic dynein orchestrate glucose-stimulated insulin-containing vesicle movements in clonal MIN6 ??-cells. Biochemical and Biophysical Research Communications, 311(2), pp.272–282.
Wagner, O.I. et al., 2009. Synaptic scaffolding protein SYD-2 clusters and activates kinesin-3 UNC-104 in C. elegans. Proceedings of the National Academy of Sciences of the United States of America, 106(46), pp.19605–19610.
Watanabe, K. et al., 2012. Networks of Polarized Actin Filaments in the Axon Initial Segment Provide a Mechanism for Sorting Axonal and Dendritic Proteins. Cell Reports, 2(6), pp.1546–1553.
Willis, J.H. et al., 2006. Conditional dominant mutations in the Caenorhabditis elegans gene act-2 identify cytoplasmic and muscle roles for a redundant actin isoform. Molecular biology of the cell, 17(3), pp.1051–64.
Wöllert, T. et al., 2011. Myosin5a tail associates directly with Rab3A-containing compartments in neurons. Journal of Biological Chemistry, 286(16), pp.14352–14361.
Wu, G.-H. et al., 2016. Identification and Characterization of LIN-2(CASK) as a Regulator of Kinesin-3 UNC-104(KIF1A) Motility and Clustering in Neurons. Traffic (Copenhagen, Denmark), 17(8), pp.891–907. Available at: http://www.ncbi.nlm.nih.gov/pubmed/27172328 [Accessed August 23, 2016].
Wu, X. et al., 1997. Myosin V associates with melanosomes in mouse melanocytes: evidence that myosin V is an organelle motor. Journal of cell science, 110 ( Pt 7, pp.847–59. Available at: http://www.ncbi.nlm.nih.gov/pubmed/9133672.
Wu, X.S. et al., 2002. Identification of an organelle receptor for myosin-Va. Nature cell biology, 4(4), pp.271–278.
Yonekawa, V. et al., 1998. Defect in synaptic vesicle precursor transport and neuronal cell death in KIF1A motor protein-deficient mice. Journal of Cell Biology, 141(2), pp.431–441.
Yoshimura, A. et al., 2006. Myosin-Va Facilitates the Accumulation of mRNA/Protein Complex in Dendritic Spines. Current Biology, 16(23), pp.2345–2351.
Zheng, Q. et al., 2014. The Vesicle Protein SAM-4 Regulates the Processivity of Synaptic Vesicle Transport. PLoS Genetics, 10(10).
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

1. Visualization of Direct Protein Interactions in the Nervous System of C. elegans Using the BiFC Assay
2. Visualization of interactions between molecular motors and their adaptors in the nervous system of C. elegans using the BiFC assay
3. Protein with Tau-Like Repeats (PTL-1) Is a Cargo for KIF1A/UNC-104 and Regulates Its Transport Characteristics
4. 研究SNB-1和RAB-3在線蟲神經系統中的軸突運輸
5. 在線蟲神經系統中LIN-2與UNC-104的交互作用及其活化UNC-104運動能力的分子機制
6. Dynein和dynactin在突觸囊泡運輸以及在KIF1A/UNC-104的聚集與運輸中所扮演的角色
7. 研究中間絲蛋白IFB-1在線蟲amphid神經中對粒線體運輸之影響
8. 探討磷酸激酶及磷酸酶影響線蟲神經纖毛生成及纖毛內運輸機制的可能性
9. 探討秀麗隱桿線蟲在dynein和dynactin變異下軸突中UNC-104的聚集與運輸
10. 研究激酶GCK-2及PKG-1對線蟲神經纖毛生成及鞭毛內運輸機制之影響調控
11. 在線蟲神經系統中探討 LIN-2, SYD-2 及 MAP1-A 對於 Kinesin-3 UNC-104 移動機制之調節
12. Identification of an intermediate filament TAG-63 affecting fast axonal transport in Caenorhabditis elegans
13. 第一章: 線蟲三聯複合體RAB-3-UNC-10-SYD-2之活性區調控驅動蛋白-3 UNC-104的作用角色 第二章: PKG-1與GCK-2 能調節線蟲感覺神經之纖毛長度與鞭毛內運輸 第三章: 線蟲中似神經絲蛋白TAG-63能促進神經軸突傳遞機制
14. 探討線蟲神經突觸缺失如何改變微管轉譯後修飾與軸突運輸
15. 透過細胞骨架與突觸前驅因子調節軸突的快速運輸
 
* *