|
Ali, M.Y. et al., 2007. Myosin Va maneuvers through actin intersections and diffuses along microtubules. Proceedings of the National Academy of Sciences of the United States of America, 104(11), pp.4332–6. Available at: http://www.pnas.org/content/104/11/4332.long. Ali, M.Y. et al., 2008. Myosin V and Kinesin act as tethers to enhance each others’ processivity. Proceedings of the National Academy of Sciences of the United States of America, 105(12), pp.4691–4696. Aydar, E. & Palmer, C.P., 2009. Polycystic kidney disease channel and synaptotagmin homologues play roles in schizosaccharomyces pombe cell wall synthesis/Repair and membrane protein trafficking. Journal of Membrane Biology, 229(3), pp.141–152. Barkus, R. V et al., 2008. Identification of an axonal kinesin-3 motor for fast anterograde vesicle transport that facilitates retrograde transport of neuropeptides. Molecular biology of the cell, 19(1), pp.274–83. Berger, F. et al., 2011. Co-operative transport by molecular motors. Biochemical Society transactions, 39(5), pp.1211–5. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21936791. Bittins, C.M. et al., 2010. Dominant-negative myosin Va impairs retrograde but not anterograde axonal transport of large dense core vesicles. Cellular and Molecular Neurobiology, 30(3), pp.369–379. Bittins, C.M., Eichler, T.W. & Gerdes, H.H., 2009. Expression of the dominant-negative tail of myosin va enhances exocytosis of large dense core vesicles in neurons. Cellular and Molecular Neurobiology, 29(4), pp.597–608. Carson, J.H. et al., 1997. Translocation of myelin basic protein mRNA in oligodendrocytes requires microtubules and kinesin. Cell Motility and the Cytoskeleton, 38(4), pp.318–328. Chen, Y. et al., 2013. Myosin Vb gene is associated with schizophrenia in Chinese Han population. Psychiatry Research, 207(1–2), pp.13–18. Costa, M.C.R. et al., 1999. Brain myosin-V, a calmodulin-carrying myosin, binds to calmodulin- dependent protein kinase II and activates its kinase activity. Journal of Biological Chemistry, 274(22), pp.15811–15819. Duerr, J.S. et al., 2008. Identification of major classes of cholinergic neurons in the nematode Caenorhabditis elegans. The Journal of comparative neurology, 506(3), pp.398–408. Available at: http://onlinelibrary.wiley.com/doi/10.1002/cne.21551/full\nhttp://www.ncbi.nlm.nih.gov/pubmed/18041778. Estes, K.A., Szumowski, S.C. & Troemel, E.R., 2011. Non-lytic, actin-based exit of intracellular parasites from c. elegans intestinal cells. PLoS Pathogens, 7(9). Fishilevich, S. et al., 2016. Genic insights from integrated human proteomics in GeneCards. Database : the journal of biological databases and curation, 2016(0), p.baw030-. Available at: http://database.oxfordjournals.org/content/2016/baw030.full. Fuxman Bass, J.I. et al., 2014. Transcription factor binding to Caenorhabditis elegans first introns reveals lack of redundancy with gene promoters. Nucleic Acids Research, 42(1), pp.153–162. Gally, C. et al., 2009. Myosin II regulation during C. elegans embryonic elongation: LET-502/ROCK, MRCK-1 and PAK-1, three kinases with different roles. Development, 136(18), pp.3109–3119. Available at: http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=19675126&retmode=ref&cmd=prlinks\npapers2://publication/doi/10.1242/dev.039412. Gidon, A. et al., 2012. A Rab11A/Myosin Vb/Rab11-FIP2 Complex Frames Two Late Recycling Steps of Langerin from the ERC to the Plasma Membrane. Traffic, 13(6), pp.815–833. Goldberg, D.J., 1982. Microinjection into an identified axon to study the mechanism of fast axonal transport. Proceedings of the National Academy of Sciences of the United States of America, 79(15), pp.4818–4822. Hall, D.H. & Hedgecock, E.M., 1991. Kinesin-related gene unc-104 is required for axonal transport of synaptic vesicles in C. elegans. Cell, 65(5), pp.837–847. Hancock, W.O., 2014. Bidirectional cargo transport: moving beyond tug of war. Nature Reviews Molecular Cell Biology, 15(9), pp.615–628. Hasaka, T.P., Myers, K. a & Baas, P.W., 2004. Role of actin filaments in the axonal transport of microtubules. The Journal of neuroscience : the official journal of the Society for Neuroscience, 24(50), pp.11291–11301. Hirokawa, N., Niwa, S. & Tanaka, Y., 2010. Molecular motors in neurons: transport mechanisms and roles in brain function, development, and disease. Neuron, 68(4), pp.610–638. Available at: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=21092854. Hoogenraad, C.C. & Akhmanova, A., 2016. Bicaudal D Family of Motor Adaptors: Linking Dynein Motility to Cargo Binding. Trends in Cell Biology, 26(5), pp.327–340. Horgan, C.P. & McCaffrey, M.W., 2011. Rab GTPases and microtubule motors. Biochemical Society Transactions, 39(5), pp.1202–1206. Jin, Y. et al., 2011. Myosin V transports secretory vesicles via a Rab GTPase cascade and interaction with the exocyst complex. Developmental Cell, 21(6), pp.1156–1170. Kapitein, L.C. et al., 2013. Myosin-V opposes microtubule-based cargo transport and drives directional motility on cortical actin. Current Biology, 23(9), pp.828–834. Kelleher, J.F. et al., 2000. Myosin VI is required for asymmetric segregation of cellular components during C. elegans spermatogenesis. Current Biology, 10(23), pp.1489–1494. Kern, J. V. et al., 2013. The kinesin-3, Unc-104 regulates dendrite morphogenesis and synaptic development in Drosophila. Genetics, 195(1), pp.59–72. Kevenaar, J.T. et al., 2016. Kinesin-Binding Protein Controls Microtubule Dynamics and Cargo Trafficking by Regulating Kinesin Motor Activity. Current Biology, 26(7), pp.849–861. Klebe, S. et al., 2012. KIF1A missense mutations in SPG30, an autosomal recessive spastic paraplegia: distinct phenotypes according to the nature of the mutations. European Journal of Human Genetics, 20(November 2011), pp.645–649. Klopfenstein, D.R. et al., 2002. Role of phosphatidylinositol(4,5)bisphosphate organization in membrane transport by the Unc104 kinesin motor. Cell, 109(3), pp.347–358. Klopfenstein, D.R. & Vale, R.D., 2004. The lipid binding pleckstrin homology domain in UNC-104 kinesin is necessary for synaptic vesicle transport in Caenorhabditis elegans. Molecular biology of the cell, 15(8), pp.3729–39. Available at: http://www.molbiolcell.org.eresources.shef.ac.uk/content/15/8/3729. Korobova, F. & Svitkina, T., 2010. Molecular Architecture of Synaptic Actin Cytoskeleton in Hippocampal Neurons Reveals a Mechanism of Dendritic Spine Morphogenesis. Molecular Biology of the Cell, 21, pp.165–176. Kumar, J. et al., 2010. The Caenorhabditis elegans kinesin-3 motor UNC-104/KIF1A is degraded upon loss of specific binding to cargo. PLoS Genetics, 6(11). Lapierre, L.A. et al., 2001. Myosin vb is associated with plasma membrane recycling systems. Molecular biology of the cell, 12(6), pp.1843–1857. Lewis, A.K. & Bridgman, P.C., 1992. Nerve growth cone lamellipodia contain two populations of actin filaments that differ in organization and polarity. Journal of Cell Biology, 119(5), pp.1219–1244. Lindsay, A.J. et al., 2013. Identification and characterization of multiple novel Rab-myosin Va interactions. Molecular biology of the cell, 24(21), pp.3420–34. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3814135&tool=pmcentrez&rendertype=abstract. Lipka, J. et al., 2016. Microtubule-binding protein doublecortin-like kinase 1 (DCLK1) guides kinesin-3-mediated cargo transport to dendrites. The EMBO Journal, 35(3), pp.302–318. Lisé, M.F. et al., 2006. Involvement of myosin Vb in glutamate receptor trafficking. Journal of Biological Chemistry, 281(6), pp.3669–3678. Liu, Y. et al., 2013. Myosin Vb controls biogenesis of post-Golgi Rab10 carriers during axon development. Nature communications, 4(May), p.2005. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23770993. Lundquist, E. a et al., 1998. UNC-115, a conserved protein with predicted LIM and actin-binding domains, mediates axon guidance in C. elegans. Neuron, 21(2), pp.385–392. Lupas, a, Van Dyke, M. & Stock, J., 1991. Predicting coiled coils from protein sequences. Science (New York, N.Y.), 252(5010), pp.1162–4. Available at: http://www.ncbi.nlm.nih.gov/pubmed/2031185. MacQueen, a J. et al., 2005. ACT-5 is an essential Caenorhabditis elegans actin required for intestinal microvilli formation. Molecular biology of the cell, 16(7), pp.3247–59. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1165408&tool=pmcentrez&rendertype=abstract. Maeder, C.I. et al., 2014. In vivo neuron-wide analysis of synaptic vesicle precursor trafficking. Traffic, 15(3), pp.273–291. Mahoney, T.R. et al., 2006. Regulation of synaptic transmission by RAB-3 and RAB-27 in Caenorhabditis elegans. Molecular biology of the cell, 17(6), pp.2617–25. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1474797&tool=pmcentrez&rendertype=abstract. Margie, O., Palmer, C. & Chin-Sang, I., 2013. C. elegans chemotaxis assay. Journal of visualized experiments : JoVE, (74), p.e50069. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23644543. Martin, M. et al., 1999. Cytoplasmic Dynein, the Dynactin Complex, and Kinesin Are Interdependent and Essential for Fast Axonal Transport. Molecular Biology of the Cell, 10(11), pp.3717–3728. Available at: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC25669/\nhttp://www.ncbi.nlm.nih.gov/pmc/articles/PMC25669/pdf/mk003717.pdf. Mermall, V. et al., 2005. Drosophila myosin V is required for larval development and spermatid individualization. Developmental Biology, 286(1), pp.238–255. Miller, K.E. & Sheetz, M.P., 2000. Characterization of myosin V binding to brain vesicles. Journal of Biological Chemistry, 275(4), pp.2598–2606. Müller, M.J.I. et al., 2008. Tug-of-war as a cooperative mechanism for bidirectional cargo transport by molecular motors. Proc. Natl. Acad. Sci. USA, 105(12), pp.4609–14. Nascimento, A.A. et al., 1996. Enzymatic characterization and functional domain mapping of brain myosin-V. The Journal of biological chemistry, 271(29), pp.17561–17569. Niwa, S. et al., 2016. Autoinhibition of a Neuronal Kinesin UNC-104/KIF1A Regulates the Size and Density of Synapses. Cell Reports. Nonet, M.L. et al., 1997. Caenorhabditis elegans rab-3 mutant synapses exhibit impaired function and are partially depleted of vesicles. The Journal of Neuroscience, 17(21), pp.8061–8073. Otsuka, A.J. et al., 1991. The C. elegans unc-104 4 gene encodes a putative kinesin heavy chain-like protein. Neuron, 6(1), pp.113–122. Pastural, E. et al., 1997. Griscelli disease maps to chromosome 15q21 and is associated with mutations in the myosin-Va gene. Nature genetics, 16(3), pp.289–292. Pathak, D., Sepp, K.J. & Hollenbeck, P.J., 2010. Evidence that myosin activity opposes microtubule-based axonal transport of mitochondria. The Journal of neuroscience : the official journal of the Society for Neuroscience, 30(26), pp.8984–8992. Petralia, R.S. et al., 2001. Glutamate receptor targeting in the postsynaptic spine involves mechanisms that are independent of myosin Va. European Journal of Neuroscience, 13(9), pp.1722–1732. Piekny, A.J. et al., 2003. The Caenorhabditis elegans nonmuscle myosin genes nmy-1 and nmy-2 function as redundant components of the let-502/Rho-binding kinase and mel-11/myosin phosphatase pathway during embryonic morphogenesis. Development (Cambridge, England), 130(23), pp.5695–704. Available at: http://www.ncbi.nlm.nih.gov/pubmed/14522875. Pilling, A.D. et al., 2006. Kinesin-1 and Dynein are the primary motors for fast transport of mitochondria in Drosophila motor axons. Molecular biology of the cell, 17(4), pp.2057–68. Available at: http://www.molbiolcell.org/content/17/4/2057.full. Prekeris, R. & Terrian, D.M., 1997. Brain myosin V is a synaptic vesicle-associated motor protein: Evidence for a Ca2+-dependent interaction with the synaptobrevin-synaptophysin complex. Journal of Cell Biology, 137(7), pp.1589–1601. Purcell, T.J. et al., 2002. Role of the lever arm in the processive stepping of myosin V. Proceedings of the National Academy of Sciences of the United States of America, 99(22), pp.14159–14164. Raizen, D. et al., 2012. Methods for measuring pharyngeal behaviors. WormBook, pp.1–13. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23255345. Rivire, J.B. et al., 2011. KIF1A, an axonal transporter of synaptic vesicles, is mutated in hereditary sensory and autonomic neuropathy type 2. American Journal of Human Genetics, 89(2), pp.219–301. Röder, I.V. et al., 2008. Role of myosin Va in the plasticity of the vertebrate neuromuscular junction in vivo. PLoS ONE, 3(12). Rogers, S.L. & Gelfand, V.I., 1998. Myosin cooperates with microtubule motors during organelle transport in melanophores. Current biology : CB, 8, pp.161–164. Roland, J.T., Lapierre, L.A. & Goldenring, J.R., 2009. Alternative splicing in class v myosins determines association with rab10. Journal of Biological Chemistry, 284(2), pp.1213–1223. Schnell, E. & Nicoll, R.A., 2001. Hippocampal synaptic transmission and plasticity are preserved in myosin Va mutant mice. Journal of neurophysiology, 85(4), pp.1498–501. Available at: http://jn.physiology.org/content/85/4/1498.abstract. Sklar, P. et al., 2008. Whole-genome association study of bipolar disorder. Molecular Psychiatry, 13(6), pp.558–569. Available at: http://www.nature.com/doifinder/10.1038/sj.mp.4002151. Sloane, J.A. & Vartanian, T.K., 2007. Myosin Va controls oligodendrocyte morphogenesis and myelination. The Journal of neuroscience : the official journal of the Society for Neuroscience, 27(42), pp.11366–11375. Soppina, V. et al., 2009. Tug-of-war between dissimilar teams of microtubule motors regulates transport and fission of endosomes. Proceedings of the National Academy of Sciences of the United States of America, 106(46), pp.19381–6. Available at: http://www.pnas.org/content/106/46/19381.full. Sutphin, G.L. & Kaeberlein, M., 2009. Measuring Caenorhabditis elegans life span on solid media. Journal of visualized experiments : JoVE, (27), pp.1–7. Takagishi, Y. et al., 2005. Localization of myosin II and V isoforms in cultured rat sympathetic neurones and their potential involvement in presynaptic function. The Journal of physiology, 569(Pt 1), pp.195–208. Takagishi, Y. et al., 1996. The dilute-lethal (d(l)) gene attacks a Ca2+ store in the dendritic spine of Purkinje cells in mice. Neuroscience Letters, 215(3), pp.169–172. Takamori, S. et al., 2006. Molecular Anatomy of a Trafficking Organelle. Cell, 127(4), pp.831–846. Tanaka, M. et al., 2001. Role of Rab3 GDP/GTP exchange protein in synaptic vesicle trafficking at the mouse neuromuscular junction. Molecular biology of the cell, 12(5), pp.1421–1430. Thierry-Mieg, D. & Thierry-Mieg, J., 2006. AceView: a comprehensive cDNA-supported gene and transcripts annotation. Genome biology, 7 Suppl 1, p.S12.1-14. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1810549&tool=pmcentrez&rendertype=abstract. Tien, N.W. et al., 2011. Tau/PTL-1 associates with kinesin-3 KIF1A/UNC-104 and affects the motor’s motility characteristics in C. elegans neurons. Neurobiology of Disease, 43(2), pp.495–506. Trybus, K.M., 2008. Myosin V from head to tail. Cellular and Molecular Life Sciences, 65(9), pp.1378–1389. Varadi, A. et al., 2003. Kinesin I and cytoplasmic dynein orchestrate glucose-stimulated insulin-containing vesicle movements in clonal MIN6 ??-cells. Biochemical and Biophysical Research Communications, 311(2), pp.272–282. Wagner, O.I. et al., 2009. Synaptic scaffolding protein SYD-2 clusters and activates kinesin-3 UNC-104 in C. elegans. Proceedings of the National Academy of Sciences of the United States of America, 106(46), pp.19605–19610. Watanabe, K. et al., 2012. Networks of Polarized Actin Filaments in the Axon Initial Segment Provide a Mechanism for Sorting Axonal and Dendritic Proteins. Cell Reports, 2(6), pp.1546–1553. Willis, J.H. et al., 2006. Conditional dominant mutations in the Caenorhabditis elegans gene act-2 identify cytoplasmic and muscle roles for a redundant actin isoform. Molecular biology of the cell, 17(3), pp.1051–64. Wöllert, T. et al., 2011. Myosin5a tail associates directly with Rab3A-containing compartments in neurons. Journal of Biological Chemistry, 286(16), pp.14352–14361. Wu, G.-H. et al., 2016. Identification and Characterization of LIN-2(CASK) as a Regulator of Kinesin-3 UNC-104(KIF1A) Motility and Clustering in Neurons. Traffic (Copenhagen, Denmark), 17(8), pp.891–907. Available at: http://www.ncbi.nlm.nih.gov/pubmed/27172328 [Accessed August 23, 2016]. Wu, X. et al., 1997. Myosin V associates with melanosomes in mouse melanocytes: evidence that myosin V is an organelle motor. Journal of cell science, 110 ( Pt 7, pp.847–59. Available at: http://www.ncbi.nlm.nih.gov/pubmed/9133672. Wu, X.S. et al., 2002. Identification of an organelle receptor for myosin-Va. Nature cell biology, 4(4), pp.271–278. Yonekawa, V. et al., 1998. Defect in synaptic vesicle precursor transport and neuronal cell death in KIF1A motor protein-deficient mice. Journal of Cell Biology, 141(2), pp.431–441. Yoshimura, A. et al., 2006. Myosin-Va Facilitates the Accumulation of mRNA/Protein Complex in Dendritic Spines. Current Biology, 16(23), pp.2345–2351. Zheng, Q. et al., 2014. The Vesicle Protein SAM-4 Regulates the Processivity of Synaptic Vesicle Transport. PLoS Genetics, 10(10).
|