帳號:guest(52.15.48.189)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林家鵬
作者(外文):Lin, Chia-Peng
論文名稱(中文):光柵結構之表面電漿柯爾磁光增強效應整合微流體晶片系統應用於生醫感測
論文名稱(外文):Demonstration of Using Surface Plasmon Enhanced Magneto-Optic Kerr Effect to Implement a Compact Micro-Optofluidic Sensor
指導教授(中文):李明昌
指導教授(外文):Lee, Ming-Chang
口試委員(中文):衛榮漢
李國賓
口試委員(外文):Wei, Zung-Hang
Lee, Gwo-Bin
學位類別:碩士
校院名稱:國立清華大學
系所名稱:光電工程研究所
學號:102066545
出版年(民國):105
畢業學年度:105
語文別:中文
論文頁數:62
中文關鍵詞:微流體生醫感測表面電漿光柵磁光柯爾效應
外文關鍵詞:microfluidicsbiosensorsurface plasmonic gratingmagneto-optical Kerr effect
相關次數:
  • 推薦推薦:0
  • 點閱點閱:138
  • 評分評分:*****
  • 下載下載:11
  • 收藏收藏:0
在本研究中,我們主要在金光柵表面電漿(SPR)系統下,加入鐵磁性材料形成金/鐵/金之三明治結構,以提升橫向磁光柯爾效應(TMOKE)的表面電漿增強現象,並應用於非標定、高敏感度的光學生物量測。經材料選擇與結構尺寸優化,而後整合PDMS微流道系統封裝;其中包含微泵浦(micropump)及閥門(normally-close valves)等動件並加入PDMS稜鏡設計降低反射雜訊,成一32×22 mm2的自動化生醫感測晶片。我們分析了元件特性及生物量測的能力,其最大磁光訊號約為0.04 且能觀察到磁光訊號在共振波長附近對環境折射率具有相當高的靈敏度。首先透過整合好的磁光感測晶片來量測不同濃度的蔗糖水溶液,所測得之本質解析度與蔗糖水(bulk solution)的最小解析濃度分別約為1.47×10-6 RIU與0.007%(wt);之後利用高親和力的avidin/biotin生物組合做動態(real time)量測:預先將biotin透過BSA標定接於元件金表面,後通入不同濃度之avidin驗證表面電漿磁光訊號對表面附近之生物檢體具有線性量測與定量分析的特性,計算得出avidin 之解析度約為31nM。
In this thesis, a high-sensitivity biosensor is demonstrated by exploiting surface plasma(SP) enhanced transverse magneto-optical Kerr effect(TMOKE). The size of the device is 32×22 mm2 with the prism, microfluidic system and ferromagnetic plasmonic grating integrated on a single chip with the ability to deliver and detect bio-agents systematically. The SP grating made on an optimized composite Au/Fe/Au layer exhibits a very dispersive Kerr Parameter variation near the surface plasmon resonance wavelength. After the fabricating process, we characterized the magneto optical effect of the composite ferromagnetic grating and the capabilities for detecting bio-molecules. The maximum of measured Kerr signal is about 0.04 with convert factor of 0.087 nm-1. Through this integrated system, we have demonstrated the detection of sucrose solution in low concentrations. The calculated resolution for bulk solution is about 10-6 RIU, corresponding to a minimal concentration of 0.007 %(wt). Moreover, a preliminary experimental result on studying avidin biotin interaction was also shown. The sensitivity of avidin detection in PBS solution is about 31 nM, which is limited by the fluctuation of flowing media during measurement. The whole system is potential to accomplish a compact, noncontact optical detection scheme.
Abstract I
摘要 II
目錄 III
圖目錄 V
表目錄 VIII
第一章 緒論 1
1.1 表面電漿 1
1.2 微流體系統 2
1.3 研究動機 3
1.4 文章架構 5
第二章 理論背景 6
2.1 表面電漿基本原理 6
2.2 偏振方向與表面電漿模態之關係 8
2.3 激發表面電漿波 10
2.4 磁光效應原理 14
2.5 磁光柯爾效應 16
2.6 表面電漿磁光效應 18
2.7 生物感測器之應用 20
第三章 實驗模擬與元件設計 23
3.1 時域有限差分法(FDTD) 23
3.2 材料分析 29
3.3 非等向性色散曲線 31
3.4 元件最佳化設計 33
第四章 元件製作及量測系統 38
4.1 元件製作流程圖 38
4.2 元件製作流程說明 39
4.3 微流道製作 44
4.4 量測系統架設 48
4.5 功率放大器與電磁鐵製作 49
第五章 實驗量測與分析 50
5.1 磁光訊號量測 50
5.2 蔗糖水溶液的量測與解析度估計 51
5.3 生物檢體組 52
5.4 生物檢體量測方法 54
5.5 動態生物量測 55
第六章 結果與討論 57
6.1 結論 57
6.2 改善 58
參考資料 59

[1] R. W. Wood, "On a remarkable case of uneven distribution of light in a diffraction grating spectrum," Philosophical Magazine, vol. 4, pp. 396-402, Jul-Dec 1902.
[2] U. Fano, "The Theory of Anomalous Diffraction Gratings and of Quasi-Stationary Waves on Metallic Surfaces (Sommerfeld’s Waves)," Journal of the Optical Society of America, vol. 31, pp. 213-222, 1941.
[3] R. H. Ritchie, E. T. Arakawa, J. J. Cowan, and R. N. Hamm, "Surface-Plasmon Resonance Effect in Grating Diffraction," Physical Review Letters, vol. 21, pp. 1530-1533, 1968.
[4] E. A. Stern and R. A. Ferrell, "SURFACE PLASMA OSCILLATIONS OF A DEGENERATE ELECTRON GAS," Physical Review, vol. 120, pp. 130-136, 1960 1960.
[5] E. Kretschmann and H. Raether, "Notizen: radiative decay of non radiative surface plasmons excited by light," Zeitschrift für Naturforschung A, vol. 23, pp. 2135-2136, 1968.
[6] A. Otto, "Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection," Zeitschrift für Physik, vol. 216, pp. 398-410, 1968.
[7] T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature, vol. 391, pp. 667-669, 1998.
[8] K. Yao and Y. Liu, "Plasmonic metamaterials," Nanotechnology Reviews, vol. 3, pp. 177-210, 2014.
[9] B. Liedberg, C. Nylander, and I. Lundstrom, "SURFACE-PLASMON RESONANCE FOR GAS-DETECTION AND BIOSENSING," Sensors and Actuators, vol. 4, pp. 299-304, 1983 1983.
[10] A. Manz, N. Graber, and H. á. Widmer, "Miniaturized total chemical analysis systems: a novel concept for chemical sensing," Sensors and actuators B: Chemical, vol. 1, pp. 244-248, 1990.
[11] Y.-C. Li, Y.-F. Chang, L.-C. Su, and C. Chou, "Differential-phase surface plasmon resonance biosensor," Analytical Chemistry, vol. 80, pp. 5590-5595, Jul 15 2008.
[12] D. Regatos, D. Fariña, A. Calle, A. Cebollada, B. Sepúlveda, G. Armelles, et al., "Au/Fe/Au multilayer transducers for magneto-optic surface plasmon resonance sensing," Journal of Applied Physics, vol. 108, p. 054502, 2010.
[13] W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature, vol. 424, pp. 824-830, 2003.
[14] E. Hutter and J. H. Fendler, "Exploitation of localized surface plasmon resonance," Advanced Materials, vol. 16, pp. 1685-1706, 2004.
[15] A. A. Grunin, A. G. Zhdanov, A. A. Ezhov, E. A. Ganshina, and A. A. Fedyanin, "Surface-plasmon-induced enhancement of magneto-optical Kerr effect in all-nickel subwavelength nanogratings," Applied Physics Letters, vol. 97, p. 261908, 2010.
[16] J. M. Liu, "photonic Devices," 2005.
[17] B. H. A. Y. Victor Antonov, Electronic Structure and Magneto-Optical Properties of solids: KLUWER ACADEMIC PUBLISHERS, 2004.
[18] B. D. C. a. C. D. Graham, Introduction to Magnetic Materials. Mass: Addison Wesley, 1972.
[19] F. Pineider, G. Campo, V. Bonanni, C. de Julián Fernández, G. Mattei, A. Caneschi, et al., "Circular Magnetoplasmonic Modes in Gold Nanoparticles," Nano Letters, vol. 13, pp. 4785-4789, 2013.
[20] V. I. Belotelov, I. A. Akimov, PohlM, V. A. Kotov, KastureS, A. S. Vengurlekar, et al., "Enhanced magneto-optical effects in magnetoplasmonic crystals," Nat Nano, vol. 6, pp. 370-376.
[21] K. S. Yee, "Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media," IEEE Trans. Antennas Propag, vol. 14, pp. 302-307, 1966.
[22] J.-N. Hwang and F.-C. Chen, "Effect of the conductivity profile on the stability of the ADI-FDTD method with split-field PML," in 2006 Asia-Pacific Microwave Conference, 2006, pp. 945-948.
[23] J.-P. Berenger, "Perfectly matched layer for the FDTD solution of wave-structure interaction problems," IEEE Transactions on Antennas and Propagation, vol. 44, pp. 110-117, 1996.
[24] D. J. Bergman and Y. M. Strelniker, "Anisotropic ac electrical permittivity of a periodic metal-dielectric composite film in a strong magnetic field," Physical review letters, vol. 80, p. 857, 1998.
[25] Y. M. Strelniker and D. J. Bergman, "Optical transmission through metal films with a subwavelength hole array in the presence of a magnetic field," Physical Review B, vol. 59, p. R12763, 1999.
[26] Y. M. Strelniker, "Theory of optical transmission through elliptical nanohole arrays," Physical Review B, vol. 76, p. 085409, 2007.
[27] C. Clavero, K. Yang, J. R. Skuza, and R. A. Lukaszew, "Magnetic field modulation of intense surface plasmon polaritons," Optics Express, vol. 18, pp. 7743-7752, Apr 12.
[28] G. Armelles, A. Cebollada, A. Garcia-Martin, J. M. Garcia-Martin, M. U. Gonzalez, J. B. Gonzalez-Diaz, et al., "Magnetoplasmonic nanostructures: systems supporting both plasmonic and magnetic properties," Journal of Optics a-Pure and Applied Optics, vol. 11, Nov 2009.
[29] S. Kopetz, D. Cai, E. Rabe, and A. Neyer, "PDMS-based optical waveguide layer for integration in electrical–optical circuit boards," AEU-International Journal of Electronics and Communications, vol. 61, pp. 163-167, 2007.
[30] W. Qiu, "PDMS Based Waveguides for Microfluidics and EOCB," Zhejiang University, 2012.
[31] Y. Demidenko, D. Makarov, O. G. Schmidt, and V. Lozovski, "Surface plasmon-induced enhancement of the magneto-optical Kerr effect in magnetoplasmonic heterostructures," Journal of the Optical Society of America B, vol. 28, pp. 2115-2122, 2011.
[32] Z. Geng, Q. Li, W. Wang, and Z. Li, "PDMS prism-glass optical coupling for surface plasmon resonance sensors based on MEMS technology," Science China Information Sciences, vol. 53, pp. 2144-2158, 2010.
[33] Z.-x. Geng, X. Ji, X. Lou, Q. Li, W. Wang, and Z.-h. Li, "A surface plasmon resonance (SPR) sensor chip integrating prism array based on polymer microfabrication," in Solid-State and Integrated-Circuit Technology, 2008. ICSICT 2008. 9th International Conference on, 2008, pp. 2561-2564.
[34] K. H. Yoon, M. L. Shuler, and S. J. Kim, "Design optimization of nano-grating surface plasmon resonance sensors," Optics Express, vol. 14, pp. 4842-4849, May 29 2006.
[35] J. Korpela, "AVIDIN, A HIGH-AFFINITY BIOTIN-BINDING PROTEIN, AS A TOOL AND SUBJECT OF BIOLOGICAL-RESEARCH," Medical Biology, vol. 62, pp. 5-26, 1984 1984.
[36] ThermoFisherScientific. Avidin-Biotin Interaction. Available: https://www.thermofisher.com/tw/zt/home.html
[37] M. Frasconi, F. Mazzei, and T. Ferri, "Protein immobilization at gold-thiol surfaces and potential for biosensing," Analytical and Bioanalytical Chemistry, vol. 398, pp. 1545-1564, Oct 2010.
[38] K. Fujiwara, H. Watarai, H. Itoh, E. Nakahama, and N. Ogawa, "Measurement of antibody binding to protein immobilized on gold nanoparticles by localized surface plasmon spectroscopy," Analytical and Bioanalytical Chemistry, vol. 386, pp. 639-644, Oct 2006.
[39] X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, "Sensitive optical biosensors for unlabeled targets: A review," analytica chimica acta, vol. 620, pp. 8-26, 2008.
[40] J. Homola, S. S. Yee, and G. Gauglitz, "Surface plasmon resonance sensors: review," Sensors and Actuators B: Chemical, vol. 54, pp. 3-15, 1999.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *