|
[1] F. Y. Lin and J. M. Liu, ”Chaotic radar using nonlinear laser dynamics”, IEEE J. Quantum Electron. 40, 815–820 (2004).
[2] F. Y. Lin and J. M. Liu, ”Chaotic lidar”, IEEE J. of Sel. Top. Quantum Electron. 10, 991–994 (2004).
[3] A. Argyris, D. Syvridis, L. Larger, V. Annovazzi Lodi, P. Colet, I. Fischer, J. Garcia-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, ”Chaos-based communications at high bit rates using commercial fibre optic links”, Nature 438, 343–346 (2005).
[4] A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, ”Fast physical random bit generation with chaotic semiconductor lasers”, Nat. Photonics 2, 728–732 (2008).
[5] F. Y. Lin and J. M. Liu, ”Nonlinear dynamical characteristics of an optically injected semiconductor alser subject to opteolectronic feedback”, Opt.Commun. 221, 176–180 (2003).
[6] K. Petermann, ”External optical feedback phenomena in semiconductor lasers”, SPIE. 2450, 121–129 (1995).
[7] R. Lang, and K. Kobayashi, ”External optical feedback effects on semiconductor injection laser properties”, IEEE J. Quantum Electron. 16, 347–355 (1980).
[8] S. K. Hwang, J. M. Liu, and J. K. White, ”Characteristics of period-one oscillations in semiconductor lasers subject to optical injection”, IEEE Photonics Technol. Lett. 10 974–981 (2004).
[9] S. C. Chan, S. K. Hwang, and J. M. Liu ”Period-one oscillation for photonic microwave transmission using an optically injected semiconductor laser”, Opt. Express 15, 14921–14935 (2007).
[10] S. C. Chan and J. M. Liu, ”Tunable narrow-linewidth photonic microwave generation using semiconductor laser dynamics”, IEEE Photonics Technol. Lett. 10 1025–1032 (2004).
[11] S. Kobayashi, Y. Yamamoto, M. Ito, and T. Kimura, ”Direct frequency modulation in AlGaAs semiconductor lasers ”, IEEE J. Quantum Electron. 18 582–595 (1982).
[12] J. P. Yao, ”Microwave photonics”, IEEE J. Lightwave Technol. 27, 314–335 (2009).
[13] X. Q. Qi and J. M. Liu, ”Photonic microwave applications of the dynamics of semiconductor lasers”, IEEE J. Quantum Electron. 17, 1198–1211 (2011).
[14] J. Capmany and D. Novak, ”Microwave photonics combines two worlds”, Nat. Photon. 1, 319–330 (2007).
[15] X. S. Yao and L. Maleki, ”Multiloop optoelectronic oscillator”, IEEE J. Quantum Electron. 36, 79–84 (2000).
[16] C. Y. Lin, F. Grillot, N. A. Naderi, Y. Li, and L. F. Lester, ”Rf linewidth reduction in a quantum dot passively mode-locked laser subject to external optical feedback”, Appl. phys. Lett. 96, 051118 (2010).
[17] Y. N. Tan, L. Jin, L. Cheng, Z. Quan, M. Li, and B.O. Guan, ”Multi-octave tunable RF signal generation based on a dual-polarization fiber grating laser”, Photon Technol. 20, 6961–6967 (2012).
[18] T. B. Simpson, J. M. Liu, M. Almulla, N. G. Usechak, and V. Kovanis, ”Limit-cycle dynamics with reduced sensitivity to perturbations”, Phys. Rev. Lett. 112, 023901 (2014).
[19] C. H. Cheng, L. C. Lin, and F. Y. Lin, ”Self-mixing dual-frequency laser Doppler velocimeter”, Opt. Express 22, 3600–3610 (2014).
[20] Y. H. Hung, C. H. Chu, and S. K. Hwang, ”Optical double-sideband modulation to single-sideband modulation conversion using period-one nonlinear dynamics of semiconductor lasers for radio-over-fiber links”, Opt. Lett. 38, 1482–1484 (2013).
[21] M. Pochet, T. Locke, and N. G. Usechak, ”Generation and modulation of a millimeter-wave subcarrier on an optical frequency generated via optical injection”, IEEE Photon. J. 4, 1881–1891 (2012).
[22] Y. H. Liao, J. M. Liu, and F. Y. Lin, ”Dynamical characteristics of a dual-beam optically injected semiconductor laser”, IEEE J. of Sel. Top. Quantum Electron. 19, 1500606 (2013).
[23] T. B. Simpson, J. M. Liu, M. Almulla, N. G. Usechak, and V. Kovanis, ”Linewidth sharpening via polarization-rotated feedback in optically injected semiconductor laser oscillators”, IEEE J. of Sel. Top. Quantum Electron. 19, 1500807 (2013).
[24] K. H. Lo, S. K. Hwang, S. Donati, ”Optical feedback stabilization of photonic microwave generation using period-one nonlinear dynamics of semiconductor lasers”, Opt. Express 22, 18648–18661 (2014).
[25] J. P. Zhuang and S. C. Chan, ”Tunable photonic microwave generation using optically injected semiconductor laser dynamics with optical feedback stabilization”, Opt. Lett. 38, 344–346 (2013).
[26] J. P. Zhuang and S. C. Chan, ”Phase noise characteristics of microwave signals generated by semiconductor laser dynamics”, Opt. Express 23, 2777–2797 (2015).
[27] J. M. Liu and T. B. Simpson, ”Four-wave mixing and optical modulation in a semiconductor laser”, IEEE J. Quantum Electron. 30, 957–965 (1994).
[28] L. B. Mercer, ”1/f noise effects on self-heterodyne linewidth measurement”, IEEE J. Lightwave Technol. 9, 485–493 (1991).
[29] H. Ludvigsen, M. Tossavainen, and M. Kaivola, ”Laser linewidth measurement using self-heterodyne detection with short delay”, Opt.Commun. 155, 180–186 (1998).
[30] M. Han and A. Wang, ”Analysis of a loss-compensated recirculating delayed selfheterodyne interferometer for laser linewdith measurement”, Appl. Phy. B 81, 53–58 (2008).
[31] X. P. Chen, M. Han, Y. Z. Zhu, B. Dong, and A. B. Wang, ”Implementation of a loss-compensated recirculating delayed self-heterodyne interferometer for ultranarrow laser linewidth measurement”, Appl. Opt. 45, 7712–7717 (2006). |