帳號:guest(3.144.254.18)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):劉思欣
作者(外文):Liu. Ssu Hsin
論文名稱(中文):光注入與光回饋半導體雷射所產生之光子微波訊號線寬比較
論文名稱(外文):Comparison of the linewidths of photonic microwave signals generated by semiconductor lasers subject to optical injection and optical feedback
指導教授(中文):林凡異
指導教授(外文):Lin.Fan Yi
口試委員(中文):黃承彬
阮于珊
學位類別:碩士
校院名稱:國立清華大學
系所名稱:光電工程研究所
學號:102066541
出版年(民國):105
畢業學年度:104
語文別:中文英文
論文頁數:45
中文關鍵詞:週期一微波訊號線寬穩定度
外文關鍵詞:photonic microwavelinewidthstability
相關次數:
  • 推薦推薦:0
  • 點閱點閱:320
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
光子微波訊號於近年來被廣泛的應用於光纖通訊中,因為其有著低損耗以及不受電磁波干擾的特點,而半導體雷射中的週期一(Period-one, P1) 非線性動態為一種有效產生光子微波的方式。本研究旨在比較於光回饋與光注入半導體雷射中所產生的週期一非線性動態其微波訊號特性,並分別分析此兩種系統中,在何種操作條件下產生之週期一微波訊號具有較小線寬與較大的穩定率,其將有利於測速應用上解析度的提升以及增加於光纖傳輸的距離。
光注入半導體雷射的系統中,操作在特定注入強度ξi 與週期一微波訊號頻率不隨主副雷射光頻差Δf 改變的條件附近,能得到最小微波線寬4.685 MHz 。此時進一步分析產生週期一微波訊號的主雷射(ML) 與副雷射(SL) 分別之光譜線寬,發現在最小微波線寬時會得到線寬穩定率82.3 %。而在光回饋系統中,藉由控制回饋強度ξf 以及外部共振腔長Lext ,可使微波訊號的線寬與強度產生明顯的週期性變化。隨著回饋強度的增加與外部共振腔長的增長,能得到最小微波線寬209 kHz 。我們接著分析光回饋系統下產生週期一微波訊號的主頻(MF) 與次頻(SF) 光譜線寬,在線寬最小時,能有高達98% 的穩定率。由比較兩種系統得知,在光回饋系統中,週期一微波訊號擁有較小的線寬以及較高的穩定率,並且其具有較廣的操作條件範圍。
最後,為使兩個系統於相同的操作條件下比較週期一微波訊號,將於光注入系統選擇主雷射與副雷射線寬相同時,於光回饋系統選擇主頻與次頻線寬相同時,分析週期一微波訊號與兩種系統線寬總和時的比值,得到光注入系統為0.1 倍,光回饋系統為0.02 倍,表示光回饋系統能產生更窄的微波線寬。
Photonic microwave generation techniques have been widely studied in recent years. It has characteristic of low propagation loss and no electromagnetic interference in fiber optics communication. The period-one (P1) nonlinear dynamics of semiconductor lasers is one of the way to generate photonic microwave. In this study, we compare the photonic microwave signals generated by semiconductor lasers subject to optical injection (OI) system and optical feedback (OF) system. In addition, we investigate the minimum linewidth and maximum linewidth reduction ratio under different operation conditions. Narrower linewidth and better stability increase the resolution of velocimeter and improve radio-over-fiber communication. In the OI system, the lowest P1 linewidth operation point is around the detuning-insensitivity point. We further analyzed the linewidth of the master laser (ML) and slave laser (SL) constituting the P1. In the OF system, the P1 microwave linewidth is found to decrease when the feedback strength and the external cavity length increase. Here we analyzed the linewidth of the master frequency (MF) and secondary frequency (SF) constituting the P1. Compared with the OI system, the P1 linewidth in the OF system can be as low as 209 kHz in stead of 4.685 MHz and the linewidth reduction ratio can be as high as 98% in stead of 82.3%. In sum, with the OF system, it has narrower linewidth of photonic microwave, higher linewidth reduction ratio, and broader operating region.
Finally, to quantitatively compare the P1 microwave linewidth in the OI and the OF systems, we let the linewidths of the ML and the SL in the OI system to be the same while the linewidths of the MF and SF in the OF system to be the same. In the OF system, the ratio of the P1 microwave linewidth to the sum of the two optical signals constituting the P1 oscillation is 0.02, which is lower than the OI system which has a value of 0.1.
致謝
摘要
Abstract
目錄
圖目錄
1 緒論 1
1.1 前言........................................1
1.2 研究動機.....................................2
2 原理.............................................4
2.1 光注入與光回饋下半導體雷射的非線性動態行為.......5
2.2 拍頻訊號的量測................................9
2.3 雷射線寬自相外差干涉法........................11
3 光注入系統下微波訊號特性量測與分析..................12
3.1 光注入系統實驗架構............................13
3.2 光注入系統微波訊號的特性量測...................17
3.3 產生週期一微波訊號的主雷射、副雷射特性量測.......20
3.4 綜合討論.....................................23
4 光回饋系統下微波訊號特性量測與分析..................26
4.1 光回饋系統實驗架構............................27
4.2 光回饋系統微波訊號的特性量測...................29
4.3 產生週期一微波訊號的主頻、次頻特性量測..........33
4.4 綜合討論.....................................36
5 結論.............................................39
6 未來展望.........................................41
參考文獻...........................................42

[1] F. Y. Lin and J. M. Liu, ”Chaotic radar using nonlinear laser dynamics”, IEEE J. Quantum Electron. 40, 815–820 (2004).

[2] F. Y. Lin and J. M. Liu, ”Chaotic lidar”, IEEE J. of Sel. Top. Quantum Electron. 10, 991–994 (2004).

[3] A. Argyris, D. Syvridis, L. Larger, V. Annovazzi Lodi, P. Colet, I. Fischer, J. Garcia-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, ”Chaos-based communications at high bit rates using commercial fibre optic links”, Nature 438, 343–346 (2005).

[4] A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, ”Fast physical random bit generation with chaotic semiconductor lasers”, Nat. Photonics 2, 728–732 (2008).

[5] F. Y. Lin and J. M. Liu, ”Nonlinear dynamical characteristics of an optically injected semiconductor alser subject to opteolectronic feedback”, Opt.Commun. 221, 176–180 (2003).

[6] K. Petermann, ”External optical feedback phenomena in semiconductor lasers”, SPIE. 2450, 121–129 (1995).

[7] R. Lang, and K. Kobayashi, ”External optical feedback effects on semiconductor injection laser properties”, IEEE J. Quantum Electron. 16, 347–355 (1980).

[8] S. K. Hwang, J. M. Liu, and J. K. White, ”Characteristics of period-one oscillations in semiconductor lasers subject to optical injection”, IEEE Photonics Technol. Lett. 10 974–981 (2004).

[9] S. C. Chan, S. K. Hwang, and J. M. Liu ”Period-one oscillation for photonic microwave transmission using an optically injected semiconductor laser”, Opt. Express
15, 14921–14935 (2007).

[10] S. C. Chan and J. M. Liu, ”Tunable narrow-linewidth photonic microwave generation using semiconductor laser dynamics”, IEEE Photonics Technol. Lett. 10 1025–1032
(2004).

[11] S. Kobayashi, Y. Yamamoto, M. Ito, and T. Kimura, ”Direct frequency modulation in AlGaAs semiconductor lasers ”, IEEE J. Quantum Electron. 18 582–595 (1982).

[12] J. P. Yao, ”Microwave photonics”, IEEE J. Lightwave Technol. 27, 314–335 (2009).

[13] X. Q. Qi and J. M. Liu, ”Photonic microwave applications of the dynamics of semiconductor lasers”, IEEE J. Quantum Electron. 17, 1198–1211 (2011).

[14] J. Capmany and D. Novak, ”Microwave photonics combines two worlds”, Nat. Photon. 1, 319–330 (2007).

[15] X. S. Yao and L. Maleki, ”Multiloop optoelectronic oscillator”, IEEE J. Quantum Electron. 36, 79–84 (2000).

[16] C. Y. Lin, F. Grillot, N. A. Naderi, Y. Li, and L. F. Lester, ”Rf linewidth reduction in a quantum dot passively mode-locked laser subject to external optical feedback”, Appl. phys. Lett. 96, 051118 (2010).

[17] Y. N. Tan, L. Jin, L. Cheng, Z. Quan, M. Li, and B.O. Guan, ”Multi-octave tunable RF signal generation based on a dual-polarization fiber grating laser”, Photon
Technol. 20, 6961–6967 (2012).

[18] T. B. Simpson, J. M. Liu, M. Almulla, N. G. Usechak, and V. Kovanis, ”Limit-cycle dynamics with reduced sensitivity to perturbations”, Phys. Rev. Lett. 112, 023901 (2014).

[19] C. H. Cheng, L. C. Lin, and F. Y. Lin, ”Self-mixing dual-frequency laser Doppler velocimeter”, Opt. Express 22, 3600–3610 (2014).

[20] Y. H. Hung, C. H. Chu, and S. K. Hwang, ”Optical double-sideband modulation to single-sideband modulation conversion using period-one nonlinear dynamics of semiconductor lasers for radio-over-fiber links”, Opt. Lett. 38, 1482–1484 (2013).

[21] M. Pochet, T. Locke, and N. G. Usechak, ”Generation and modulation of a millimeter-wave subcarrier on an optical frequency generated via optical injection”, IEEE Photon. J. 4, 1881–1891 (2012).

[22] Y. H. Liao, J. M. Liu, and F. Y. Lin, ”Dynamical characteristics of a dual-beam optically injected semiconductor laser”, IEEE J. of Sel. Top. Quantum Electron. 19, 1500606 (2013).

[23] T. B. Simpson, J. M. Liu, M. Almulla, N. G. Usechak, and V. Kovanis, ”Linewidth sharpening via polarization-rotated feedback in optically injected semiconductor
laser oscillators”, IEEE J. of Sel. Top. Quantum Electron. 19, 1500807 (2013).

[24] K. H. Lo, S. K. Hwang, S. Donati, ”Optical feedback stabilization of photonic microwave generation using period-one nonlinear dynamics of semiconductor lasers”, Opt. Express 22, 18648–18661 (2014).

[25] J. P. Zhuang and S. C. Chan, ”Tunable photonic microwave generation using optically injected semiconductor laser dynamics with optical feedback stabilization”, Opt. Lett. 38, 344–346 (2013).

[26] J. P. Zhuang and S. C. Chan, ”Phase noise characteristics of microwave signals generated by semiconductor laser dynamics”, Opt. Express 23, 2777–2797 (2015).

[27] J. M. Liu and T. B. Simpson, ”Four-wave mixing and optical modulation in a semiconductor laser”, IEEE J. Quantum Electron. 30, 957–965 (1994).

[28] L. B. Mercer, ”1/f noise effects on self-heterodyne linewidth measurement”, IEEE J. Lightwave Technol. 9, 485–493 (1991).

[29] H. Ludvigsen, M. Tossavainen, and M. Kaivola, ”Laser linewidth measurement using self-heterodyne detection with short delay”, Opt.Commun. 155, 180–186 (1998).

[30] M. Han and A. Wang, ”Analysis of a loss-compensated recirculating delayed selfheterodyne interferometer for laser linewdith measurement”, Appl. Phy. B 81, 53–58 (2008).

[31] X. P. Chen, M. Han, Y. Z. Zhu, B. Dong, and A. B. Wang, ”Implementation of a loss-compensated recirculating delayed self-heterodyne interferometer for ultranarrow
laser linewidth measurement”, Appl. Opt. 45, 7712–7717 (2006).
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *