帳號:guest(52.15.181.10)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳映如
作者(外文):Chen, Ying Ju
論文名稱(中文):波長可調之可見光奈秒雷射及其於功能性光學解析度之光聲顯微術的應用
論文名稱(外文):Wavelength-tunable visible pulse generation for functional optical resolution photoacoustic microscopy
指導教授(中文):楊尚達
指導教授(外文):Yang, Shang Da
口試委員(中文):李夢麟
林碩泰
口試委員(外文):Li, Meng Lin
Lin, Shou Tai
學位類別:碩士
校院名稱:國立清華大學
系所名稱:光電工程研究所
學號:102066537
出版年(民國):104
畢業學年度:104
論文頁數:39
中文關鍵詞:準相位匹配光參震盪器光學解析度光聲顯微術
外文關鍵詞:Quasi-phase matchingOptical parametric oscillatorOptical resolution photoacoustic microscopy
相關次數:
  • 推薦推薦:0
  • 點閱點閱:79
  • 評分評分:*****
  • 下載下載:7
  • 收藏收藏:0
近年來,跨領域的科學研究備受關注,其中生醫光電也是個熱門的議題,此研究主要是開發可調式波長之可見光奈秒脈衝雷射應用於血氧濃度的估測以及光學解析度的光聲顯微術。由於血氧濃度的估測需要包含等消光點在內的兩個波長、窄線寬(數奈米)、足夠的能量(100奈焦耳)以及穩定良好的模態(TEM00)的脈衝雷射,故此光源利用串聯非線性波長轉換(倍頻、光參震盪器、和頻)並結合光纖耦合的方式得到所需脈衝光源。其中,扇形週期性反轉鈮酸鋰晶體、致冷晶片的應用,使得此光源能夠快速的變換波長。
在光聲實驗中分別利用波長545 奈米(等消光點)、552奈米的脈衝雷射打入仿體中,藉由不同波長的光聲訊號進而得知仿體的濃度變化。實驗結果顯示仿體濃度估測誤差值可以小於8%,而掃描解析度可達約5微米。
Recently, interdisciplinary science researches have been paid much attention, and biophotonics is a popular topic. This thesis focuses on the development of wavelength-tunable visible pulse generation for hemoglobin oxygen saturation (SO2) estimation and optical resolution photoacoustic microscopy (OR-PAM). SO2 estimation requires a tunable laser possessing two wavelengths which include an isosbestic point, narrow linewidths (1-2 nm), enough pulse energy (100 nJ), and stable transverse mode (TEM00) . Therefore, our laser light source uses a cascaded nonlinear wavelength conversion; second harmonic generation(SHG), optical parametric oscillator(OPO), sum frequency generation SFG) with single mode fiber (SMF) coupling. Moreover, we are able to convert wavelengths fast with the aid of a fan-out periodically poled lithium niobate (PPLN) crystal and thermoelectric cooler (TEC).
In photoacoustic experiments, the pulse laser at 545 nm (an isosbestic point) and 552 nm is sent into a phantom, respectively. Variation of concentration in a phantom is obtained through photoacoustic (PA) signals from different wavelengths. Experimental results shows that errors of SO2 estimation in a phantom are below 8%, and the spatial resolution is around 5 um.
摘要 1
誌謝 2
ABSTRACT 3
TABLE OF CONTENTS 4
TABLE OF FIGURES 6
CHAPTER 1 INTRODUCTION 8
1.1 Motivation 10
1.2 Photoacoustic experiment 10
1.3 Nonlinear frequency conversions 11
1.4 Laser system comparison 12
1.4.1 Stimulated Raman scattering fiber laser source 12
1.4.2 Tunable-wavelength laser source via aperiodically poled lithium niobate crystal 14
CHAPTER 2 THEORY 16
2.1 Quasi-phase matching 17
2.2 Optical parametric generation 18
2.3 Optical parametric oscillator 19
2.4 Sum frequency generation 20
CHAPTER 3 SIMULATION 21
3.1 Simulation of phase matching conditions 21
CHAPTER 4 EXPERIMENT 23
4.1 Experimental setup 23
5.2 Laser performances 24
4.3 Other methods 31
4.4 Phantom experiment 32
CHAPTER 5 CONCLUSION AND PERSPECTIVE 37
5.1 Laser source 37
5.2 In-vivo imaging 37
REFERENCES 38
[1] Robles, F. E., S. Chowdhury and A. Wax. "Assessing hemoglobin concentration using spectroscopic optical coherence tomography for feasibility of tissue diagnostics." Biomedical optics express. 1: 310-317 (2010).
[2] Lihong V. Wang, and H.-I.Wu, "Biomedical Optics: Principles and Imaging." Wiley-Interscience (2007).
[3] Maslov, K., H. F. Zhang, S. Hu and L. V. Wang. "Optical-resolution photoacoustic microscopy for in vivo imaging of single capillaries." Optics letters. 33: 929-931 (2008).
[4] Bender, J. E., A. B. Shang, E. W. Moretti, B. Yu, L. M. Richards and N. Ramanujam. "Noninvasive monitoring of tissue hemoglobin using UV-VIS diffuse reflectance spectroscopy: a pilot study." Optics express. 17: 23396-23409 (2009).
[5] Jiang, Y., A. Forbrich, T. Harrison and R. J. Zemp. "Blood oxygen flux estimation with a combined photoacoustic and high-frequency ultrasound microscopy system: a phantom study." Journal of biomedical optics. 17: 0360121-0360128 (2012)
[6] Hajireza, P., A. Forbrich and R. Zemp. "In-Vivo functional optical-resolution photoacoustic microscopy with stimulated Raman scattering fiber-laser source." Biomedical optics express. 5: 539-546 (2014).
[7] Yankelevich, D., J. González, R. S. Cudney, L. A. Ríos and L. Marcu. "Development of a new pulsed source for photoacoustic imaging based on aperiodically poled lithium niobate." Biomedical optics express. 5: 468-473 (2014).
[8] Yen-Chieh Huang. "Principles of Nonlinear Optics." (2002-2014).
[9] Yoshida, H., H. Fujita, M. Nakatsuka, M. Yoshimura, T. Sasaki, T. Kamimura and K. Yoshida. "Dependences of laser-induced bulk damage threshold and crack patterns in several nonlinear crystals on irradiation direction." Japanese journal of applied physics. 45: 766 (2006).
[10] LAYERTEC optische Beschichtungen GmbH
[11] McNaught, A. D. and A. D. McNaught. "Compendium of chemical terminology," Blackwell Science Oxford. 1669 (1997).
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *