帳號:guest(3.12.136.218)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):饒瑞桓
作者(外文):Rao, Ruei Huan
論文名稱(中文):光還原金奈米粒子於DNA生物高分子之螢光能量轉移特性研究
論文名稱(外文):Study of fluorescence resonance energy transfer using photo-triggered synthesized gold nanoparticles in DNA biopolymer
指導教授(中文):洪毓玨
指導教授(外文):Hung, Yu Chueh
口試委員(中文):王立康
李明昌
口試委員(外文):Wang, Li Karn
Lee, Ming Chang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:光電工程研究所
學號:102066535
出版年(民國):105
畢業學年度:104
語文別:中文英文
論文頁數:73
中文關鍵詞:金奈米粒子去氧核醣核酸福斯特共振能量轉移局部表面電漿共振
外文關鍵詞:gold nanoparticlesdeoxyribonucleic acid, DNAFörster resonance energy transfer, FRETlocalized surface plasmon resonance, LSPR
相關次數:
  • 推薦推薦:0
  • 點閱點閱:205
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
福斯特共振能量轉移(Förster resonance energy transfer, FRET)效應被廣泛地應用於生物體醫學感測方面的研究,而在此我們希望能夠運用去氧核醣核酸(deoxyribonucleic acid, DNA)複合材料與光化學還原金奈米粒子的特性,進階擴展FRET效應於光電領域方面的發展。
此篇研究中,我們首先介紹了因DNA特殊雙股螺旋結構的特性,用於染料FRET系統中當作染料的主體可減少染料分子的自消光現象,進而提升FRET系統中螢光染料分子間的能量轉移效率,並以常見的有機高分子聚合物-聚甲基丙烯酸甲酯(PMMA)作為對照組與其比較,發現對於雙染料系統而言,以DNA複合物作為主體的FRET能量轉移效率較以PMMA作為主體的FRET能量轉移效率高。另外,我們使用光化學還原之金奈米粒子的局部表面電漿共振來改變FRET系統的特性,首先利用金奈米粒子的吸收光譜圖探討照光還原的情況,再以TEM電子影像圖討論金奈米粒子藉由不同照光還原時間的生成型態,最後摻雜不同還原時間的金奈米粒子溶液於染料FRET系統中,藉此改變染料FRET系統螢光薄膜的光學特性。我們以螢光光譜圖分析染料FRET系統的螢光特性與CIE色度座標圖來探討FRET系統所顯現的光色變化,發現隨著摻雜的體積比例增加,系統的螢光與光色會有一明顯的變化趨勢,未來可運用於紫外線感測與光電元件上。
Förster resonance energy transfer (FRET) has been widely applied in biomedical sensing studies. The purpose of our study is to explore potential FRET-mediated applications in optoelectronics by combining the fabrication platform of deoxyribonucleic acid (DNA) composite and photoinduced gold nanoparticles (NPs).
In this study, we first examine the FRET efficiency in dye-doped DNA system and show that the efficiency could be enhanced by virtue of the structural features of DNA compared to the PMMA counterparts. It is suggested that the structure of DNA can spatially organize the chromophores and reduce the phenomenon of self-quenching due to the aggregation of chromophores. Furthermore, we examine the influence of localized plasmon resonance in the FRET systems by addition of gold NPs synthesized by photoreduction method. We analyze the optical properties of gold NPs with different photoreduction time by absorption spectra and the shape of gold NPs with different photoreduction time by transmission electron microscopy (TEM). Finally, we investigate the FRET systems with different doping levels of gold NPs by photoluminescence (PL) spectra and color analysis in CIE color space. We present that color of the thin film can be changed with different doping levels of gold NPs by FRET. Such effect can be used in the applications of UV sensors and various photonic devices.
摘要 I
Abstract II
致謝 III
目錄 IV
圖目錄 VI
第1章 文獻回顧與介紹 1
1.1 前言 1
1.2 生物性高分子DNA介紹及應用 1
1.2.1 DNA介紹 1
1.2.2 DNA材料發展與應用 3
1.3 Förster resonance energy transfer (FRET) 6
1.3.1 FRET基本原理 6
1.3.2 FRET效應應用 8
1.4 金屬奈米粒子介紹 12
1.4.1 金屬奈米粒子局部表面電漿共振原理及其應用 12
1.4.2 金屬奈米粒子製備 15
1.5 研究動機 16
第2章 實驗製備與量測 17
2.1. 藥品介紹 17
2.2. DNA複合材料製備 17
2.2.1 DNA-CTMA合成 17
2.2.2 DNA-染料複合材料製備 18
2.2.3 光合成金奈米粒子 19
2.3. 元件製備 20
2.4. FRET效率計算 21
2.5. 儀器介紹 22
3.1 染料螢光薄膜FRET系統 26
3.1.1. DNA與PMMA-染料螢光薄膜 26
3.1.2. 不同主體之FRET能量轉移效率比較 31
3.2 金奈米粒子於染料螢光薄膜FRET系統 32
3.2.1 照光時間對金奈米粒子生成的影響 33
3.2.2 金晶種摻雜濃度的影響 35
3.2.3 金奈米粒子摻雜濃度的影響 41
3.2.2 CIE於FRET系統之分析 47
第3章 總結與未來展望 51
參考文獻 52
[1.] J. A. Hagen, W. Li, A. J. Steckl, and J. G. Grote, "Enhanced emission efficiency in organic light-emitting diodes using deoxyribonucleic acid complex as an electron blocking layer", Applied Physics Letters 88, 171109 (2006).
[2.] Y. C. Hung, W. T. Hsu, T. Y. Lin, and L. Fruk, "Photoinduced write-once read-many-times memory device based on DNA biopolymer nanocomposite", Applied Physics Letters 99, 253301 (2011).
[3.] F. He, Y. Tang, S. Wang, Y. Li, and D. Zhu, "Fluorescent amplifying recognition for DNA G-quadruplex folding with a cationic conjugated polymer: A platform for homogeneous potassium detection", Journal of the American Chemical Society, 127, 35, 12343-12346 (2005).
[4.] D. Navarathne, Y. Ner, J. G. Grote, G. A. Sotzing, "Three dye energy transfer cascade within DNA thin films", Chemical Communications, 47, 12125–12127 (2011).
[5.] M. Lunz, X. Zhang, V. A. Gerard, Y. K. Gun’ko, V. Lesnyak, N. Gaponik, A. S. Susha, A. L. Rogach, and A. L. Bradley, "Effect of metal nanoparticle concentration on localized surface Plasmon mediated Förster resonant energy transfer", The Journal of Physical Chemistry C, 116, 50, 26529−26534 (2012).
[6.] X. D. Liu, H. Y. Diao and N. Nishi, “Applied chemistry of natural DNA”, Chemical Society Reviews, 37, 2745–2757 (2008)
[7.] Retrieved from https://en.wikipedia.org/wiki/DNA
[8.] Y. Kawabe, L. Wang, S. Horinouchi, and N. Ogata, "Amplified spontaneous emission from fluorescent-dye-doped DNA-surfactant complex films", Advanced Materials, 12, 17 (2000)
[9.] P. Stadler, K. Oppelt, T. B. Singh, J. G. Grote, R. Schwodiauer, S. Bauer, H. Piglmayer-Brezina, D. Bauerle, N. S. Sariciftci, "Organic field-effect transistors and memory elements using deoxyribonucleic acid (DNA) gate dielectric", Organic Electronics 8, 6, 648–654 (2007)
[10.] A. J. STECKL, "DNA – a new material for photonics?", Nature Photonics, 1 (2007)
[11.] G. Subramanyam, E. Heckman, J. Grote, and F. Hopkins, "Microwave dielectric properties of DNA based polymers between 10 and 30 GHz", IEEE Microwave and Wireless Components Letters, 15, 4 (2005)
[12.] Y. Ner, J. G. Grote, J. A. Stuart and G. A. Sotzing, "Enhanced fluorescence in electrospun dye-doped DNA nanofibers", Soft Matter, 4, 1448–1453 (2008)
[13.] A. Miniewicz, A. Kochalska, J. Mysliwiec, A. Samoc, M. Samoc, and J. G. Grote, "Deoxyribonucleic acid-based photochromic material for fast dynamic holography", Applied Physics Letters 91, 041118 (2007)
[14.] J. G. Grote, J. A. Hagen, J. S. Zetts, R. L. Nelson, D. E. Diggs, M. O. Stone, P. P. Yaney, E. Heckman, C. Zhang, W. H. Steier, A. K.-Y. Jen, L. R. Dalton, N. Ogata, M. J. Curley, S. J. Clarson, and F. K. Hopkins, "Investigation of polymers and marine-derived DNA in optoelectronics", The Journal of Physical Chemistry B, 108, 25, 8584-8591 (2004)
[15.] X. D. Liu, H. Y. Diao and N. Nishi, "Applied chemistry of natural DNA", Chemical Society Reviews, 37, 2745–2757 (2008)
[16.] H. Nakao, H. Shiigi, Y. Yamamoto, S. Tokonami, T. Nagaoka, S. Sugiyama, and T. Ohtani, "Highly ordered assemblies of Au nanoparticles organized on DNA", Nano Letters, 3, 10, 1391-1394 (2003)
[17.] M. G. Warner and J. E. Hutchison, "Linear assemblies of nanoparticles electrostatically organized on DNA scaffolds", Nature Materials, 2 (2003)
[18.] T. Förster, "Zwischenmolekulare Energiewanderung und Fluoreszenz", Annals of Physics, 437, 2, 55-75 (1948)
[19.] J. R. Lakowicz, "Principles of fluorescence spectroscopy 2nd", Kluwer Academic/Plenum Publishers, New York (1999).
[20.] Retrieved from https://goo.gl/jTixLf
[21.] K. Truong, M. Ikura, "The use of FRET imaging microscopy to detect protein–protein interactions and protein conformational changes in vivo", Current Opinion in Structural Biology, 11, 5, 573–578 (2001).
[22.] F. He, Y. Tang, S. Wang, Y. Li, and D. Zhu, "Fluorescent amplifying recognition for DNA G-quadruplex folding with a cationic conjugated polymer: a platform for homogeneous potassium detection", Journal of the American Chemical Society, 127, 35, 12343-12346 (2005).
[23.] W. Qiao, M. Mooney, A. J. Bird, D. R. Winge, and D. J. Eide, "Zinc binding to a regulatory zinc-sensing domain monitored in vivo by using FRET", Proceedings of the National Academy of Sciences, 103, 23, 8674–8679 (2006).
[24.] X. Zhang, Y. Xiao, and X. Qian, "A ratiometric fluorescent probe based on FRET for Imaging Hg2+ ions in living cells", Angewandte Chemie International Edition, 47, 42, 8025-8029 (2008).
[25.] K. Shankar, X. Feng, and C. A. Grimes, "Enhanced harvesting of red photons in nanowire solar cells: evidence of resonance energy transfer", American Chemical Society Nano, 3, 4, 788–794 (2009).
[26.] J. Lee, A. O. Govorov, and N. A. Kotov, "Bioconjugated superstructures of CdTe nanowires and nanoparticles: Multistep cascade Förster resonance energy transfer and energy channeling", Nano Letters, 5, 10, 2063-2069 (2005).
[27.] T. Franzl, T. A. Klar, S. Schietinger, A. L. Rogach, and J. Feldmann, "Exciton recycling in graded gap nanocrystal structures", Nano Letters, 4, 9, 1599-1603 (2004).
[28.] M. I. Stockman, "Nanoplasmonics: The physics behind the applications", American Institute of Physics, 64, 2, 39-44 (2011).
[29.] K. A. Willets and R. P. V. Duyne, "Localized surface Plasmon resonance spectroscopy and sensing", Annual Review of Physical Chemistry, 58, 267-297 (2007).
[30.] C. F. Bohren and D. R. Huffman, "Absorption and scattering of light by small particles", J. Wiley, New York (1983).
[31.] J. P. Kottmann, O. J. F. Martin, D. R. Smith and S. Schultz, "Plasmon resonances of silver nanowires with a nonregular cross section", Physical Review B, 64, 235402
[32.] I. Freestone, N. Meeks, M. Sax, and C. Higgitt, "The lycurgus cup-a Roman nanotechnology", Gold Bulletin, 40, 4, 270-277 (2007).
[33.] C. F. Chen, S. D. Tzeng, H. Y. Chen, K. J. Lin, and S. Gwo, "Tunable plasmonic response from alkanethiolate-stabilized gold nanoparticle superlattices: evidence of near-field coupling", Journal of the American Chemical Society, 130, 824-826 (2008)
[34.] M. Westphalen, U. Kreibig, J. Rostalski, H. Luth, D. Meissner, "Metal cluster enhanced organic solar cells", Solar Energy Materials & Solar Cells, 61, 97-105 (2000).
[35.] G. Doria, J. Conde, B. Veigas, L. Giestas, C. Almeida, M. Assunção, J. Rosa and P. V. Baptista, "Noble metal nanoparticles for biosensing applications", Sensors, 12, 2, 1657-1687 (2012).
[36.] V. K. Komarala, A. L. Bradley, Y. P. Rakovich, S. J. Byrne, Y. K. Gun’ko, and A. L. Rogach, "Surface plasmon enhanced Förster resonance energy transfer between the CdTe quantum dots", Applied Physics Letters, 93, 123102 (2008).
[37.] K. Aslan, J. R. Lakowicz and C. D. Geddes, "Plasmon light scattering in biology and medicine: new sensing approaches, visions and perspectives", Current Opinion in Chemical Biology, 9, 538–544 (2005).
[38.] V. Amendola, S. Polizzi, and M. Meneghetti, "Laser ablation synthesis of gold nanoparticles in organic solvents", The Journal of Physical Chemistry B, 110, 14, 7232-7237 (2006).
[39.] A. A. Ponce, K. J. Klabunde, "Chemical and catalytic activity of copper nanoparticles prepared via metal vapor synthesis", Journal of Molecular Catalysis A: Chemical, 225, 1–6 (2005).
[40.] A. Šileikaitė, I. Prosyčevas, J. Puišo,A. Juraitis, A. Guobienė, "Analysis of silver nanoparticles produced by chemical reduction of silver salt solution", ISSN Materials Science (Medžiagotyra), 12, 4, 1392–1320 (2006).
[41.] L. C. Courrol, F. R. de O. Silva, L. Gomes, "A simple method to synthesize silver nanoparticles by photo-reduction", Colloids and Surfaces A: Physicochemical and Engineering Aspects, 305, 54–57 (2007).
[42.] K. L. McGilvray, M. R. Decan, D. Wang, and J. C. Scaiano, "Facile photochemical synthesis of unprotected aqueous gold nanoparticles", Journal of the American Chemical Society, 128, 15980-15981 (2006).
[43.] I. S. Osad’ko, "Dependence of FRET efficiency on distance in single donor-acceptor pairs", The Journal of Chemical Physics, 142, 125102 (2015).
[44.] K. S. Sanju, P. P. Neelakandan and D. Ramaiah, "DNA-assisted white light emission through FRET", Chemical Communications, 47, 1288–1290 (2011).
[45.] K. S. Sanju, S. Thurakkal, P. P. Neelakandan, J. Joseph and D. Ramaiah, "Simultaneous binding of a cyclophane and classical intercalators to DNA: observation of FRET-mediated white light emission", Physical Chemistry Chemical Physics, 17, 20, 13495-13500 (2015).
[46.] N. Mizoshita, Y. Goto, T. Tani, and S. Inagaki, "Efficient visible-light emission from dye-doped mesostructured organosilica", Advanced Materials, 21, 47, 4798–4801 (2009).
(此全文未開放授權)
電子全文檔
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *