帳號:guest(3.14.133.127)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):張慕凡
作者(外文):Chang, Mu Fan
論文名稱(中文):多載波之分碼多址系統應用於被動光學網路
論文名稱(外文):Application of Multicarrier Code Division Multiple Access System in Passive Optical Network
指導教授(中文):馮開明
指導教授(外文):Feng, Kai Ming
口試委員(中文):彭朋群
邱奕鵬
馮開明
學位類別:碩士
校院名稱:國立清華大學
系所名稱:光電工程研究所
學號:102066534
出版年(民國):104
畢業學年度:103
語文別:中文
論文頁數:61
中文關鍵詞:被動光學網路正交分頻多工分碼多址系統
外文關鍵詞:PONOFDMCDMA
相關次數:
  • 推薦推薦:0
  • 點閱點閱:239
  • 評分評分:*****
  • 下載下載:4
  • 收藏收藏:0
在全球IP網路傳輸需求快速成長的趨勢下,建設一個符合經濟效益的接取網路硬體將會是一大難題。在未來5G網路的發展中,傳輸速度、用戶數目、每位用戶的平均表現及低成本的網路架構設計都將會是重要的議題。
本論文中我們提出並透過模擬與實做印證,DDO-MC-CDMA PON是一個通用於20-100km傳輸距離的被動光學網路架構設計。大多數的OFDM PON一般會因為低成本的考量採用強度雙邊頻帶調變,這種調變方式將伴隨嚴重的RF power fading問題;目前大多數的研究者專注在傳輸端OLT的設計,他們將其承載訊息的子載波頻率位置及子載波所承載的modulation format因應不同的傳輸距離而做特殊的調整。雖然此種針對傳輸距離以及RF power fading的適應性設計能確保最大的訊息傳輸量,但是每一位OFDM使用者依然會遭受不同程度的系統劣化,導致每位使用者無法擁有相同的接收表現,而採用MC-CDMA的方式能讓RF fading的問題平均分散給各個用戶來共同承擔,並給予每位使用者更佳的資料安全性。
看在八位使用者的情形下,OFDM的Maximum power derivation為3.6dB而MC-CDMA將只有0dB的Maximum power derivation,由此證明所有使用者將享用完全相同的系統表現。除此之外為了能夠在FEC的幫助下順利解調訊息,假使每位用戶所需要的接收功率相同,也能大幅度的增加系統的Power margin。
With the demands of high data rate access network grow rapidly therefore it is difficult to design a cost-effective access network infrastructure. In the development of future 5G network, data rate, user number, uniform performance for each user and low cost network design will be important issues.
In this thesis, we propose and demonstrate DDO-MC-CDMA PON in both simulation and experiment. The proposed PON structure can fit 20-100 km transmission distance with uniform performance. Generally, OFDM PON is implemented with double-side band intensity modulation because it’s a cost-effective design; however, it will induce serious RF power fading problem. So far, most designers focus on the transmitter design, in which adaptive modulation formats and subcarrier frequency allocation are applied in OLT for particular transmission distance. However, the maximum transmission channel capacity is achieved by adaptive design for dedicated transmission distance and RF power fading, the users in OFDM-PON still suffer unbalanced degradation and cannot enjoy the same received performance. Therefore, we employ a multi-carrier-CDMA(MC-CDMA) technique, which can not only even the degradation induced by RF power fading to each user, but also enhance the data security.
Under an eight-user scheme, the maximum received power derivation for OFDM is 3.6dB, but is 0dB for MC-CDMA. It’s evident that all of the users get the same system performance in the proposed MC-CDMA PON. Besides, since all the users need the same received power to meet the FEC threshold, the power margin for proposed system will be substantially increased.
誌謝 i
中文摘要 ii
ABSTRACT iii
目錄 iv
圖列表 vi
表列表 ix
第1章 緒論 1
1.1 前言 1
1.2 研究目的與動機 3
1.3 論文架構 3
第2章 多載波之分碼多重存取系統 4
2.1 正交分頻多工系統 4
2.1.1 正交分頻多工與分頻多工 4
2.1.2 OFDM調變與解調原理 5
2.2 分碼多址 (CDMA)系統 8
2.2.1 多址傳輸系統 8
2.2.2 CDMA的發展歷史 8
2.2.3 CDMA的加碼與解碼 9
2.3 MC-CDMA系統 11
2.3.1 MC-CDMA與CDMA的異同之處 11
2.3.2 MC-CDMA編碼器與解碼器 12
2.3.3 OFDM及MC-CDMA的頻譜分配方式 14
第3章 光學雙邊頻帶調變之系統特色 15
3.1 光纖色散效應 15
3.1.1 模態色散與極化色散 15
3.1.2 波導色散與材料色散 17
3.1.3 單模光纖中的色散統整 19
3.2 光學調變器 20
3.2.1 Mach-Zehnder Modulator 20
3.3 光學雙邊頻帶調變之功率衰減 23
3.3.1 光學雙邊頻帶調變之功率衰減理論 23
3.3.2 光學雙邊頻帶調變之功率衰減模擬與實做 25
3.4 光學雙邊頻帶調變之功率衰減與MC-CDMA 28
第4章 MC-CDMA PON 29
4.1 MC-CDMAPON模擬 29
4.1.1 模擬-參數設計 29
4.1.2 模擬-架構 30
4.1.3 模擬-頻譜圖 31
4.1.4 模擬-比較OFDM與MC-CDMA整體系統表現 33
4.1.5 模擬-比較OFDM與MC-CDMA各個使用者表現 37
4.1.6 模擬-比較OFDM與MC-CDMA在不同傳輸距離時 43
4.2 MC-CDMA PON實做 45
4.2.1 實做-架構與參數設計 45
4.2.2 實做-頻譜圖 45
4.2.3 實做-比較OFDM與MC-CDMA整體系統表現 47
4.2.4 實做-比較OFDM與MC-CDMA各個使用者表現 50
4.2.5 實做-比較OFDM與MC-CDMA在不同傳輸距離時 57
第5章 結論 58
[1] Cisco blog, Apr. 22, 2015, [Online], http://blogs.cisco.com/news/cisco-visual
-networking-index-vni-global-ip-traffic-and-service-adoption-forecast-update-2013-2018
[2] J. Kani, F. Bourgart, A. Cui, A. Rafel, M. Campbell, R. Davey, et al., "Next-Generation PON-Part I: Technology Roadmap and General Requirements," Ieee Communications Magazine, vol. 47, pp. 43-49, Nov 2009.
[3] T. Orphanoudakis, E. Kosmatos, J. Angelopoulos, and A. Stavdas, "Exploiting PONs for Mobile Backhaul," Ieee Communications Magazine, vol. 51, pp. S27-S34, Feb 2013.
[4] C. X. Wang, F. Haider, X. Q. Gao, X. H. You, Y. Yang, D. F. Yuan, et al., "Cellular Architecture and Key Technologies for 5G Wireless Communication Networks," IEEE Communications Magazine, vol. 52, pp. 122-130, Feb 2014.
[5] J. Armstrong, "OFDM for Optical Communications," Journal of Lightwave Technology, vol. 27, pp. 189-204, Jan-Feb 2009.
[6] K. Qiu, X. W. Yi, J. Zhang, H. B. Zhang, M. L. Deng, and C. F. Zhang, "OFDM-PON Optical Fiber Access Technologies," Optical Transmission Systems, Subsystems, and Technologies Ix, vol. 8309, 2011.
[7] R. W. Chang and R. A. Gibby, "A Theoretical Study of Performance of an Orthogonal Multiplexing Data Transmission Scheme," IEEE Transactions on Communication Technology, vol. Co16, pp. 529-&, 1968.
[8] Weinstei.Sb and P. M. Ebert, "Data Transmission by Frequency-Division Multiplexing Using Discrete Fourier Transform," IEEE Transactions on Communication Technology, vol. Co19, pp. 628-&, 1971.
[9] J. W. Cooley and J. W. Tukey, "An algorithm for the machine calculation of complex Fourier series," Mathematics of computation, vol. 19, pp. 297-301, 1965.
[10] Wikipedia-Hedy Lamarr ,May.18, 2015, [Online], http://en.wikipedia.org/wiki/Hedy_Lamarr
[11] R. L. Pickholtz, D. L. Schilling, and L. B. Milstein, "Theory of Spread-Spectrum Communications - a Tutorial," IEEE Transactions on Communications, vol. 30, pp. 855-884, 1982.
[12] R. A. Scholtz, "The Origins of Spread-Spectrum Communications," IEEE Transactions on Communications, vol. 30, pp. 822-854, 1982
[13] Wikipedia-Chip(CDMA) ,May.18, 2015, [Online], http://en.wikipedia.org/wiki/Chip_(CDMA)
[14] J. F. Kurose and K. W. Ross, "Computer Networking: A Top-Down Approach, 6nd Edition, " Pearson, pp. 525, 2013.
[15] F. Adachi, D. Garg, S. Takaoka, and K. Takeda, "Broadband CDMA techniques," Ieee Wireless Communications, vol. 12, pp. 8-18, Apr 2005.
[16] C. R. Pollock and M. Lipson, "Integrated Photonics, " Springer, pp. 125-144, 2003.
[17] D. Marcuse, "Interdependence of Waveguide and Material Dispersion," Applied Optics, vol. 18, pp. 2930-2932, 1979.
[18] C. R. Pollock and M. Lipson, "Integrated Photonics, " Springer, pp. 73-97, 2003.
[19] B. E. A. Saleh and M. C. Teich, "Fundamental of Photonics, 2nd Edition," New York: Wiley, pp. 150–195, 2007.
[20] "Corning SMF-28 Optical Fiber Product Information," Corning, 2001.
[21] R. G. Hunsperger, "Integrated Optics Theory and Technology," Springer, pp. 149-172, 2009.
[22] B. J. C. Schmidt, A. J. Lowery, and J. Armstrong, "Experimental demonstrations of electronic dispersion compensation for long-haul transmission using direct-detection optical OFDM," Journal of Lightwave Technology, vol. 26, pp. 196-203, Jan-Feb 2008.
[23] F. Devaux, Y. Sorel, and J. F. Kerdiles, "Simple Measurement of Fiber Dispersion and of Chirp Parameter of Intensity-Modulated Light Emitter," Journal of Lightwave Technology, vol. 11, pp. 1937-1940, Dec 1993.
[24] C. C. Wei, "Small-signal analysis of OOFDM signal transmission with directly modulated laser and direct detection," Optics Letters, vol. 36, pp. 151-153, Jan 15 2011.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *