帳號:guest(18.117.73.38)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林裕翔
作者(外文):Lin, Yu Hsiang
論文名稱(中文):利用色散遞增光纖產生頻譜壓縮雙峰與特性分析
論文名稱(外文):Generation and Analysis of Dual-Peaked Laser Spectral Compression Using a Dispersion-Increasing Fiber
指導教授(中文):黃承彬
指導教授(外文):Huang, Chen Bin
口試委員(中文):賴暎杰
施宙聰
黃承彬
學位類別:碩士
校院名稱:國立清華大學
系所名稱:光電工程研究所
學號:102066511
出版年(民國):104
畢業學年度:103
語文別:中文英文
論文頁數:42
中文關鍵詞:光孤子頻譜壓縮非線性效應
相關次數:
  • 推薦推薦:0
  • 點閱點閱:75
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
雷射光頻譜壓縮藉由能量在頻譜上的重新分佈,達到增加頻譜亮度,亦即頻譜訊雜比之目的,有助於提升飛秒雷射和超連續光頻譜的應用及發展性。本論文使用線性色散遞增光纖,透過絕熱系統下光孤子脈衝壓縮的反向操作達到頻譜壓縮。
然而,近年來有關頻譜壓縮的研究仍局限於頻譜上存在單一高峰的範疇。本論文成功地利用色散遞增光纖產生頻譜壓縮雙峰,且頻譜雙峰的特性,包括相對振幅及波長得以透過雷射源的平均功率、入射脈衝啁啾的條件調整並做分析。比對以飛秒鎖模脈衝為雷射源所量測到的實驗結果與透過非線性薛丁格方程式的數學模型所計算的數值模擬結果,兩者具有非常好的相似性。
Femtosecond lasers and optical supercontinua offer wide optical bandwidths but at the same time suffer from low spectral brightness. One solution is to perform external laser spectral compression. Our approach for spectral compression is using a linear ramp dispersion-increasing fiber (DIF), which is reverse processes of adiabatic soliton temporal compression.
However, to date, laser spectral compressions have been limited in generating a single output spectrally compressed peak. We demonstrate the generation of spectrally compressed spectrum with dual peaks. Moreover, the relative amplitudes and wavelengths of the two spectral peaks are adjustable through the average power, input pulse chirp condition. The experimental results are compared to simulations and are found in excellent agreements.
中文摘要
ABSTRACT
誌謝
目錄
圖目錄
Chapter 1序論
1.1 前言
1.2 研究背景與動機
Chapter 2光頻譜壓縮雙峰產生之理論模擬
2.1 光孤子特性
2.1.1 色散效應 (Dispersion)
2.1.2 非線性效應-自相位調變 (Self-Phase Modulation, SPM)
2.1.3 光孤子的產生與特性
2.1.4 數值模擬方法-分步傅立葉法(Split-step Fourier method, SSFM)
2.2 絕熱系統的脈衝與頻譜壓縮
2.2.1 絕熱系統的光孤子脈衝壓縮
2.2.2 絕熱系統的光孤子頻譜壓縮
2.3 色散補償光纖 (Dispersion Compensating Fiber, DCF)
2.4 頻譜壓縮雙峰之產生與特性分析
Chapter 3 光頻譜壓縮雙峰產生之實驗
3.1 短脈衝鎖模光纖雷射實驗架構與結果
3.2 大頻寬飛秒雷射頻譜壓縮實驗架構與結果
3.3 結論
Chapter 4 未來展望
[1] R. H. Stolen, and Chinlon Lin, “Self-phase-modulation in silica optical fibers,” Phys. Rev. A 17, 1448 (1978).
[2] S. A. Planas, N. L. Pires Mansur, C. H. Brito Cruz, and H. L. Fragnito, “Spectral narrowing in the propagation of chirped pulses in single-mode fibers,” Opt. Lett. 18, 699 (1993).
[3] M. Oberthaler and R. A. Hopfel, “Spectral narrowing of ultrashort laser pulses by self-phase modulation in optical fibers,” Appl. Phys. Lett. 63, 1017 (1993).
[4] B. R. Washburn, J. A. Buck, and S. E. Ralph, “Transform-limited spectral compression due to self-phase modulation in fibers,” Opt. Lett. 25, 445 (2000).
[5] J. Limpert, T. Gabler, A. Liem, H. Zellmer, and A. Tünnermann, “SPM-induced spectral compression pulses in a single-mode Yb-doped fiber amplifier,” Appl. Phys. B 74, 191 (2002).
[6] J. Limpert, N. Deguil-Robin, I. Manek-Hönninger, F. Salin, T. Schreiber, A. Liem, F. Röser, H. Zellmer, A. Tünnermann, A. Courjaud, C. Hönninger, and E. Mottay, “High-power picosecond fiber amplifier based on nonlinear spectral compression,” Opt. Lett. 30, 714 (2005)
[7] E. R. Andresen, J. Thøgersen, and S. R. Keiding, “Spectral compression of femtosecond pulses in photonic crystal fibers,” Opt. Lett. 30, 2025 (2005).
[8] D. A. Sidorov-Biryukov, A. Fernandez, L. Zhu, A. Pugžlys, E. E. Serebryannikov, A. Baltuška, and A. M. Zheltikov, “Spectral narrowing of chirp-free light pulses in anomalously dispersive, highly nonlinear photonic-crystal fibers,” Opt. Express 16, 2502 (2008).
[9] A. B. Fedotov, A. A. Voronin, I. V. Fedotov, A. A. Ivanov, and A. M. Zheltikov, “Spectral compression of frequency-shifting solitons in a photonic-crystal fiber,” Opt. Lett. 34, 662 (2009).
[10] E. R. Andresen, J. M. Dudley, D. Oron, C. Finot, and H. Rigneault, “Transoform-limited spectral compression by self-phase modulation of amplitude-shaped pulses with negative chirp,” Opt. Lett. 36, 707 (2011).
[11] N. Nishizawa, K. Takahashi, Y. Ozeki, and K. Itoh, “Wideband spectral compression of wavelength-tunable ultrashort soliton pulse using comb-profile fiber,” Opt. Express 18, 11700 (2010).
[12] H.-P. Chuang and C.-B. Huang, “Wavelength-tunable spectral compression in a dispersion-increasing fiber,” Opt. Lett. 36, 2848 (2011).
[13] W.-T. Chao, Y.-Y. Lin, J.-L. Peng, and C.-B. Huang, “Waveform-dependent laser spectral compression through pulse propagation in a dispersion-increasing fiber,” Opt. Lett. 39, 853 (2014).
[14] A. M. Weiner, Ultrafast Optics (Wiley, 2009).
[15] S. V. Chernikov and P. V. Mamyshev, J. Opt. Soc. Am.B 8, 1633 (1991).
[16] C.-B. Huang, S.-G. Park, D. E. Leaird, and A. M. Weiner, "Nonlinearly broadened phase-modulated continuous-wave laser frequency combs characterized using DPSK decoding," Optics Express, vol. 16, pp. 2520-2527, Feb 18 2008.
[17] B. E. A. S. M. C. Teich, Fundamentals of Photonics: Wiley, 1991.
[18] M. Erkintalo, G. Genty and John M. Dudley, “Experimental signatures of dispersive waves emitted during soliton collisions,” Optics Express, vol, 18, pp. 13379, June 21 2010.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *