帳號:guest(3.137.190.150)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):丁希
作者(外文):Ding, Xi
論文名稱(中文):染料摻雜DNA薄膜之能量轉移特性及其在螢光太陽能聚合器之應用
論文名稱(外文):Characterization of energy transfer in dye-doped DNA thin films and its application in luminescent solar concentrator (LSC)
指導教授(中文):洪毓玨
指導教授(外文):Hung, Yu Chueh
口試委員(中文):王立康
李明昌
口試委員(外文):Wang, Li Karn
Lee, Ming Chang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:光電工程研究所
學號:102066466
出版年(民國):105
畢業學年度:104
語文別:英文
論文頁數:72
中文關鍵詞:去氧核糖核酸有機染料能量轉移螢光太陽能聚合器薄膜
外文關鍵詞:DNAorganic dyeFRETLSCthin film
相關次數:
  • 推薦推薦:0
  • 點閱點閱:40
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
去氧核糖核酸(DNA)由於其獨特的雙股螺旋結構而在光電元件及應用中有着十分重要的地位。DNA可以控制對光敏感的分子在空間中的分佈,這一特性使得DNA成爲很好的螢光震盪能量轉移的主體材料。本研究的第一部分着重於在DNA生物高分子薄膜中實現波長跨度較長的能量轉移,主要分析了不同染料、不同染料濃度以及不同主體材料對實驗的影響。本研究的第二部分着重於用多個染料摻雜的DNA生物高分子薄膜來實現螢光太陽能聚合器的功能,通過薄膜對入射光譜進行能量轉移,以此來提升太陽能電池的工作效率。
Deoxyribonucleic acid (DNA) has a unique double helix structure that may be of great importance in optoelectronic devices and applications. The feature of spatially organizing light sensitive molecules makes DNA a promising template for efficient F¨orster resonance energy transfer (FRET). In the first part of this study, long range and cascaded energy transfer in DNA biopolymer films was studied and characterized, where the effects of different dyes, dye concentrations and different hosts were examined. In the second part of the study, multiple dyes-doped DNA biopolymer films were studied in the application of luminescent solar concentrator (LSC) for wavelength conversion to enhance efficiency of solar cells. RET mediated DNA biopolymer films based on various parameters were
investigated and the characteristics of LSC were discussed.
Abstract i
Contents ii
1 Introduction 1
1.1 Introduction of the study . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 F¨orster resonance energy transfer (FRET): introduction and applications . 1
1.2.1 Introduction of FRET . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2.2 Applications of FRET . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Luminescent solar concentrator (LSC) . . . . . . . . . . . . . . . . . . . . 6
1.4 DNA biopolymer as host . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.4.1 Introduction of DNA biopolymer . . . . . . . . . . . . . . . . . . . 10
1.4.2 Applications of DNA biopolymer . . . . . . . . . . . . . . . . . . . 11
1.5 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2 Experimental Details 15
2.1 Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 Preparation of DNA biopolymer . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3 Preparation of dye doped DNA biopolymer thin films . . . . . . . . . . . . 16
2.4 Calculation of FRET efficiency . . . . . . . . . . . . . . . . . . . . . . . . 16
2.5 Dyes in FRET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.6 Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.6.1 Measurements for optical properties . . . . . . . . . . . . . . . . . . 20
2.6.2 Measurements for solar spectra and short circuit current density JSC 21
2.7 The calculation of theoretical short circuit current density JSC of Si-PV . . 22
3 Results and Discussions 25
3.1 Characteristics of DNA biopolymer and dyes . . . . . . . . . . . . . . . . . 25
3.2 Analysis of two-dye-FRET system . . . . . . . . . . . . . . . . . . . . . . . 27
3.2.1 Emission properties of two-dye-FRET . . . . . . . . . . . . . . . . 29
3.2.2 Comparison of different donors . . . . . . . . . . . . . . . . . . . . 31
3.2.3 Effects of different total dye concentrations . . . . . . . . . . . . . . 34
3.2.4 Effects of different hosts . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2.5 Properties of LSC based on two-dye-FRET system . . . . . . . . . 42
3.3 Analysis of three-dye-FRET system . . . . . . . . . . . . . . . . . . . . . . 44
3.3.1 Emission properties of three-dye-FRET . . . . . . . . . . . . . . . . 45
3.3.2 Comparison of different first donors . . . . . . . . . . . . . . . . . . 48
3.3.3 Properties of LSC based on three-dye-FRET system . . . . . . . . . 51
3.4 Characteristics and efficiency of FRET mediated LSC . . . . . . . . . . . . 55
3.4.1 Comparison of theoretical and experimental JSC . . . . . . . . . . . 55
3.4.2 FRET efficiency with LSC efficiency . . . . . . . . . . . . . . . . . 56
3.4.3 Excitation/Absorption (Ex/Ab) method of FRET efficiency calculation 59
3.4.4 Improved performance of the Si-PV cell with LSC . . . . . . . . . . 61
4 Conclusions 62
Bibliography 65
[1] T. F¨orster, “Zwischenmolekulare energiewanderung und fluoreszenz,” Annalen der Physik 437, 55–75 (1948).
[2] V. Helms, Principles of Computational Cell Biology (Wiley, 2008).
[3] L. Novotny and B. Hecht, Principles of nano-optics (Cambridge University Press,2012).
[4] S. S. Vogel, C. Thaler, and S. V. Koushik, “Fanciful FRET,” Science Signaling 2006,re2 (2006).
[5] M. Ibisate, J. F. Galisteo-L´opez, V. Esteso, and C. L´opez, “FRET-Mediated amplified spontaneous emission in DNA-CTMA complexes,” Advanced Optical Materials 1, 651–656 (2013).
[6] N. Di Fiori and A. Meller, “The effect of dye-dye interactions on the spatial resolution of single-molecule FRET measurements in nucleic acids,” Biophysical Journal 98,
2265–2272 (2010).
[7] C. R. Sabanayagam, J. S. Eid, and A. Meller, “Using fluorescence resonance energy transfer to measure distances along individual DNA molecules: Corrections due to nonideal transfer,” The Journal of Chemical Physics 122, 061103 (2005).66
[8] I. Osadko, “Dependence of FRET efficiency on distance in single donor-acceptor pairs,”The Journal of Chemical Physics 142, 125102 (2015).
[9] M. Baldo, M. Thompson, and S. Forrest, “High-efficiency fluorescent organic lightemitting devices using a phosphorescent sensitizer,” Nature 403, 750–753 (2000).
[10] L. Cerd´an, E. Enciso, V. Mart´ın, J. Ba˜nuelos, I. L´opez-Arbeloa, A. Costela, and I. Garc´ıa-Moreno, “FRET-assisted laser emission in colloidal suspensions of dye-doped
latex nanoparticles,” Nature Photonics 6, 621–626 (2012).
[11] B. Balaban, S. Doshay, M. Osborn, Y. Rodriguez, and S. A. Carter, “The role of FRET in solar concentrator efficiency and color tunability,” Journal of Luminescence
146, 256–262 (2014).
[12] T. Fukuda, S. Kato, E. Kin, K. Okaniwa, H. Morikawa, Z. Honda, and N. Kamata,“Wavelength conversion film with glass coated Eu chelate for enhanced siliconphotovoltaic cell performance,” Optical Materials 32, 22–25 (2009).
[13] C. Str¨umpel, M. McCann, G. Beaucarne, V. Arkhipov, A. Slaoui, V. ˇSvrˇcek, C. del Canizo, and I. Tobias, “Modifying the solar spectrum to enhance silicon solar cell
efficiency-An overview of available materials,” Solar Energy Materials and Solar Cells 91, 238–249 (2007).
[14] B. A. Swartz, T. Cole, and A. H. Zewail, “Photon trapping and energy transfer in multiple-dye plastic matrices: An efficient solar-energy concentrator,” Optics Letters 1, 73–75 (1977).
[15] W. H. Weber and J. Lambe, “Luminescent greenhouse collector for solar radiation,”Applied Optics 15, 2299–2300 (1976).
[16] M. A. Green, Third generation photovoltaics (Springer, 2006).
[17] S. T. Bailey, G. E. Lokey, M. S. Hanes, J. D. Shearer, J. B. McLafferty, G. T. Beaumont, T. T. Baseler, J. M. Layhue, D. R. Broussard, Y.-Z. Zhang, and B. P. Wittmershaus,“Optimized excitation energy transfer in a three-dye luminescent solar concentrator,”Solar Energy Materials and Solar Cells 91, 67–75 (2007).
[18] C. Liu and B. Li, “Multiple dyes containing luminescent solar concentrators with enhanced absorption and efficiency,” Journal of Optics 17, 025901 (2015).
[19] W. Zhou, M.-C.Wang, and X. Zhao, “Poly(methyl methacrylate) (PMMA) doped with DCJTB for luminescent solar concentrator applications,” Solar Energy 115, 569–576 (2015).
[20] J. D. Watson and F. H. Crick, “Molecular structure of nucleic acids,” Nature 171,737–738 (1953).
[21] J. A. Hagen, “Enhanced luminous efficiency and brightness using DNA electron blocking layers in bio-organic light emitting diodes,” Ph.D. thesis, University of Cincinnati (2006).
[22] T. Singh, N. Sariciftci, and J. Grote, “Bio-organic optoelectronic devices using DNA,”in “Organic Electronics,” , vol. 223 of Advances in Polymer Science, T. Grasser,G. Meller, and L. Li, eds. (Springer Berlin Heidelberg, 2010), pp. 73–112.
[23] Y.-W. Kwon, D. H. Choi, and J.-I. Jin, “Optical, electro-optic and optoelectronic properties of natural and chemically modified DNAs,” Polymer Journal 44, 1191–1208
(2012).
[24] J. G. Grote, J. A. Hagen, J. S. Zetts, R. L. Nelson, D. E. Diggs, M. O. Stone, P. P. Yaney, E. Heckman, C. Zhang, W. H. Steier et al., “Investigation of polymers and marine-derived DNA in optoelectronics,” The Journal of Physical Chemistry B 108,8584–8591 (2004).
[25] A. J. Steckl, “DNA–a new material for photonics?” Nature Photonics 1, 3–5 (2007).
[26] Y.-C. Hung, T.-Y. Lin, W.-T. Hsu, Y.-W. Chiu, Y.-S. Wang, and L. Fruk, “Functional DNA biopolymers and nanocomposite for optoelectronic applications,” Optical Materials 34, 1208–1213 (2012).
[27] L. Wang, J. Yoshida, N. Ogata, S. Sasaki, and T. Kajiyama, “Self-assembled supramolecular films derived from marine deoxyribonucleic acid (DNA)-cationic surfactant complexes: Large-scale preparation and optical and thermal properties,”Chemistry of Materials 13, 1273–1281 (2001).
[28] Y.-C. Hung, W.-T. Hsu, T.-Y. Lin, and L. Fruk, “Photoinduced write-once read-manytimes memory device based on DNA biopolymer nanocomposite,” Applied Physics Letters 99, 253301 (2011).
[29] T. Chida and Y. Kawabe, “Tunable dye lasers based on DNA-surfactant-dye complexes,”in “Nanobiosystems: Processing, Characterization, and Applications IV,”,vol. 8103 (2011), vol. 8103, p. 81030P.
[30] Y. Kawabe, L. Wang, S. Horinouchi, and N. Ogata, “Amplified spontaneous emission from fluorescent-dye-doped DNAvsurfactant complex films,” Advanced Materials 12,1281–1283 (2000).
[31] P. Stadler, K. Oppelt, T. B. Singh, J. G. Grote, R. SchwTdiauer, S. Bauer,H. Piglmayer-Brezina, D. Buerle, and N. S. Sariciftci, “Organic field-effect transistors and memory elements using deoxyribonucleic acid (DNA) gate dielectric,” Organic Electronics 8, 648–654 (2007).
[32] W. Su, V. Bonnard, and G. A. Burley, “DNA-templated photonic arrays and assemblies:Design principles and future opportunities,” Chemistry-A European Journal 17,7982–7991 (2011).
[33] D. Mamangun, D. Navarathne, G. A. Sotzing, J. P. Lombardi, C. M. Bartsch, E. M. Heckman, K. M. Singh, J. G. Grote, and T. R. Nelson, “Optoelectronics using DNA as a template for dyes,” in “SPIE NanoScience+ Engineering,” (International Society for Optics and Photonics, 2012), p. 84640I.
[34] Z. Yu, W. Li, J. A. Hagen, Y. Zhou, D. Klotzkin, J. G. Grote, and A. J. Steckl,Photoluminescence and lasing from deoxyribonucleic acid (DNA) thin films doped with sulforhodamine,” Applied Optics 46, 1507–1513 (2007).
[35] D. H. Choi, J. E. Lee, Y.-W. Kwon, U. R. Lee, M. J. Cho, K. H. Kim, and J.-I. Jin, “Optical properties of DNA-CTMA and PA-CTMA doped with (E)-2-(2-(4-(diethylamino) styryl)-4H-pyan-4-ylidene) malononitrile (DCM),” in “SPIE Europe
Security and Defence,” (International Society for Optics and Photonics, 2008), p.71180J.
[36] E. M. Heckman, J. A. Hagen, P. P. Yaney, J. G. Grote, and F. K. Hopkins, “Processing techniques for deoxyribonucleic acid: Biopolymer for photonics applications,” Applied Physics Letters 87, 211115 (2005).
[37] T. Suzuki and Y. Kawabe, “Light amplification in DNA-surfactant complex films stained by hemicyanine dye with immersion method,” Optical Materials Express 4,1411–1419 (2014).
[38] F. Ouchen, G. A. Sotzing, T. L. Miller, K. M. Singh, B. A. Telek, A. C. Lesko, R. Aga,E. M. Fehrman-Cory, P. P. Yaney, J. G. Grote et al., “Modified processing techniques
70 of a DNA biopolymer for enhanced performance in photonics applications,” Applied Physics Letters 101, 153702 (2012).
[39] B. P. Wittmershaus, T. T. Baseler, G. T. Beaumont, and Y.-Z. Zhang, “Excitation energy transfer from polystyrene to dye in 40-nm diameter microspheres,” Journal of
Luminescence 96, 107–118 (2002).
[40] D. V. Roberts, B. P. Wittmershaus, Y.-Z. Zhang, S. Swan, and M. P. Klinosky, “Efficient excitation energy transfer among multiple dyes in polystyrene microspheres,”Journal of Luminescence 79, 225–231 (1998).
[41] K. Sadamasu, T. Inoue, Y. Ogomi, S. S. Pandey, and S. Hayase, “Hybrid dye-sensitized solar cells consisting of double titania layers for harvesting light with wide range of
wavelengths,” Applied Physics Express 4, 022301 (2011).
[42] K. S. Sanju, S. Thurakkal, P. P. Neelakandan, J. Joseph, and D. Ramaiah, “Simultaneous binding of a cyclophane and classical intercalators to DNA: Observation of FRETmediated
white light emission,” Physical Chemistry Chemical Physics 17, 13495–13500 (2015).
[43] Y. Ner, D. Navarathne, D. M. Niedzwiedzki, J. G. Grote, A. V. Dobrynin, H. A. Frank,and G. A. Sotzing, “Stabilization of fluorophore in DNA thin films,” Applied Physics Letters 95, 263701 (2009).
[44] A. Samoc, M. Samoc, J. G. Grote, A. Miniewicz, and B. Luther-Davies, “Optical properties of deoxyribonucleic acid (DNA) polymer host,” in “Optical Materials in Defence Systems Technology III,” (International Society for Optics and Photonics, 2006), p. 640106.
[45] M. G. Debije and P. P. Verbunt,“Thirty years of luminescent solar concentrator research:Solar energy for the built environment,” Advanced Energy Materials 2, 12–35
(2012).
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *