|
[1] drug. (n.d.). Dorland’s Medical Dictionary for Health Consumers., 2007. Retrieved from http://medical-dictionary.thefreedictionary.com/drug. [2] drug. (n.d.). Medical Dictionary for the Health Professions and Nursing., 2012. Retrieved from http://medical-dictionary.thefreedictionary.com/drug. [3] drug. (n.d.). Mosby’s Medical Dictionary., 2009. Retrieved from http://medicaldictionary. thefreedictionary.com/drug. [4] F. Bosch and L. Rosich. The contributions of paul ehrlich to pharmacology: A tribute on the occasion of the centenary of his nobel prize. Pharmacology, 82(3):171–179, 2008. [5] J. Lazarou, BH. Pomeranz, and PN. Corey. Incidence of adverse drug reactions in hospitalized patients: A meta-analysis of prospective studies. JAMA, 279(15):1200– 1205, 1998. [6] K. Jarell. Regulatory history: Elixir sulfanilamide. Journal of GXP Compliance, 16(3):12, 2012. [7] F. O. Kelsey. Problems raised for the fda by the occurrence of thalidomide embryopathy in germany, 1960-1961. American Journal of Public Health and the Nations Health, 55(5):703–707, 1965. [8] J. H. Kim and A. R. Scialli. Thalidomide: The tragedy of birth defects and the effective treatment of disease. Toxicological Sciences, 122(1):1–6, 2011. [9] A. Mullard. New drugs cost us [dollar] 2.6 billion to develop. Nature Reviews Drug Discovery, 13(12):877–877, 2014. [10] The biopharm guide to biopharmaceutical development. supplement to biopharm. 2nd ed. 2002. [11] P. Barber and D. Robertson. Essentials of pharmacology for nurses. 2012. [12] A. E. Routes. Drug absorption, distribution and elimination; pharmacokinetics. http://www.columbia.edu/itc/gsas/g9600/2004/GrazianoReadings/Drugabs.pdf. [13] S. M. Strittmatter. Old drugs learn new tricks. Nature Medicine, 20(6):590–591, 2014. [14] M. S. Boguski, K. D. Mandl, and V. P. Sukhatme. Repurposing with a difference. Science, 324(5933):1394–1395, 2009. [15] I. R. Edwards and J. K. Aronson. Adverse drug reactions: definitions, diagnosis, and management. The Lancet, 356(9237):1255–1259, 2000. [16] K. M. Giacomini, R. M. Krauss, D. M. Roden, M. Eichelbaum, M. R. Hayden, and Y. Nakamura. When good drugs go bad. Nature, 446(7139):975–977, 2007. [17] M. J. Alomar. Factors affecting the development of adverse drug reactions (Review article). Saudi Pharmaceutical Journal: SPJ, 22(2):83–94, 2014. [18] X. Chen, C. C. Yan, X. Zhang, X. Zhang, F. Dai, J. Yin, and Y. Zhang. Drug–target interaction prediction: databases, web servers and computational models. Briefings in bioinformatics, bbv066, 2015. [19] A. Bender, J. Scheiber, M. Glick, J. W. Davies, K. Azzaoui, J. Hamon, ..., and J. L. Jenkins. Analysis of pharmacology data and the prediction of adverse drug reactions and off-target effects from chemical structure. ChemMedChem, 2(6):861–873, 2007. [20] M. Campillos, M. Kuhn, A. C. Gavin, L. J. Jensen, and P. Bork. Drug target identification using side-effect similarity. Science, 321(5886):263–266, 2008. [21] L. Xie, J. Li, L. Xie, and P. E. Bourne. Drug discovery using chemical systems biology: identification of the protein-ligand binding network to explain the side effects of cetp inhibitors. PLoS Comput Biol, 5(5), 2009. e1000387. [22] N. P. Tatonetti, G. H. Fernald, and R. B. Altman. A novel signal detection algorithm for identifying hidden drug-drug interactions in adverse event reports. Journal of the American Medical Informatics Association, 19(1):79–85, 2012. [23] S. Mizutani, E. Pauwels, V. Stoven, S. Goto, and Y. Yamanishi. Relating drug–protein interaction network with drug side effects. Bioinformatics, 28(18):i522–i528, 2012. [24] M. Takarabe, M. Kotera, Y. Nishimura, S. Goto, and Y. Yamanishi. Drug target prediction using adverse event report systems: a pharmacogenomic approach. Bioinformatics, 28(18):i611–i618, 2012. [25] M. Liu, Y. Wu, Y. Chen, J. Sun, Z. Zhao, X. W. Chen, ..., and H. Xu. Large-scale prediction of adverse drug reactions using chemical, biological, and phenotypic properties of drugs. Journal of the American Medical Informatics Association, 19(e1):e28–e35, 2012. [26] B. Bondy. Pathophysiology of depression and mechanisms of treatment. Dialogues in clinical neuroscience, 4:7–20, 2002. [27] T. C. Baghai, C. Zirngibl, B. Heckel, N. Sarubin, and R. Rupprecht. Individualized pharmacological treatment of depressive disorders state of the art and recent developments. Journal of Depression and Anxiety, 2014. [28] R. C. Team. R: A language and environment for statistical computing. 2013. [29] Pauwels, Edouard, Stoven, Véronique, and Y. Yamanishi. Predicting drug side-effect profiles: a chemical fragment-based approach. BMC Bioinformatics, 12(1):1–13, 2011. [30] S. Kim, P. A. Thiessen, E. E. Bolton, J. Chen, G. Fu, A. Gindulyte, ..., and J. Wang. PubChem substance and compound databases. Nucleic acids research, 2015. gkv951. [31] V. Law, C. Knox, Y. Djoumbou, T. Jewison, A. C. Guo, Y. Liu, ..., and A. Tang. DrugBank 4.0: shedding new light on drug metabolism. Nucleic acids research, 42(D1), 2014. D1091-D1097. [32] M. Kuhn, I. Letunic, L. J. Jensen, and P. Bork. The SIDER database of drugs and side effects. Nucleic acids research, 2015. gkv1075. [33] Y. Cao, A. Charisi, L. C. Cheng, T. Jiang, and T. Girke. ChemmineR: a compound mining framework for R. Bioinformatics, 24(15):1733–1734, 2008. [34] UniProt Consortium. UniProt: a hub for protein information. Nucleic acids research, 2014. gku989. [35] L. Breiman. randomForest: Breiman and Cutler’s random forests for classification and regression. 2006. [36] A. Karatzoglou, A. Smola, K. Hornik, and A. Zeileis. kernlab-an S4 package for kernel methods in R. 2004. [37] H. Hotelling. Relations between two sets of variates. Biometrika, 28(3/4):321–377, 1936. [38] I. González, S. Déjean, P. G. Martin, and A. Baccini. CCA: An R package to extend canonical correlation analysis. Journal of Statistical Software, 23(12):1–14, 2008. [39] D. Witten, R. Tibshirani, S. Gross, B. Narasimhan, and M. D. Witten. Package ‘pma’. Genetics and Molecular Biology, 8(1):28, 2013. [40] T. Sing, O. Sander, N. Beerenwinkel, and T. Lengauer. ROCR: visualizing classifier performance in R. Bioinformatics, 21(20):3940–3941, 2005. [41] M. Kuhn. Caret package. Journal of Statistical Software, 28(5), 2008. [42] W. Zhang, F. Liu, L. Luo, and J. Zhang. Predicting drug side effects by multi-label learning and ensemble learning. BMC bioinformatics, 16(1):1, 2015. [43] H. Chen, J. Zha, L. Yuan, and Z. Wang. Effects of fluoxetine on behavior, antioxidant enzyme systems, and multixenobiotic resistance in the Asian clam Corbicula fluminea. Chemosphere, 119:856–862, 2015. [44] H. Möhler. The GABA system in anxiety and depression and its therapeutic potential. Neuropharmacology, 62(1):42–53, 2012. [45] R. Cacabelos. Pharmacogenomics of central nervous system (CNS) drugs. Drug Development Research, 73(8):461–476, 2012. [46] M. M. Gutierrez, J. Rosenberg, and W. Abramowitz. An evaluation of the potential for pharmacokinetic interaction between escitalopram and the cytochrome P450 3A4 inhibitor ritonavir. Clinical therapeutics, 25(4):1200–1210, 2003. [47] M. Szewczuk-Bogusławska, A. Kiejna, M. Grzesiak, J. A. Beszłej, I. Chlebowska, K. Orzechowska-Juzwenko, and P. Milejski. The influence of clomipramine on CYP2D6 activity. Psychiatria polska, 41(2):243–249, 2006. [48] K. K. Nielsen, J. P. Flinois, P. Beaune, and K. Brøsen. The biotransformation of clomipramine in vitro, identification of the cytochrome P450s responsible for the separate metabolic pathways. Journal of Pharmacology and Experimental Therapeutics, 277(3):1659–1664, 1996. [49] M. Okubo, N. Murayama, J. Miura, Y. Chiba, and H. Yamazaki. Effects of cytochrome P450 2D6 and 3A5 genotypes and possible coadministered medicines on the metabolic clearance of antidepressant mirtazapine in Japanese patients. Biochemical pharmacology, 93(1):104–109, 2015. [50] E. Lounkine, M. J. Keiser, S. Whitebread, D. Mikhailov, J. Hamon, J. L. Jenkins, ..., and B. K. Shoichet. Large-scale prediction and testing of drug activity on side-effect targets. Nature, 486(7403):361–367, 2012. [51] C. J. O’Donnell, K. Grime, P. Courtney, D. Slee, and R. J. Riley. The development of a cocktail CYP2B6, CYP2C8, and CYP3A5 inhibition assay and a preliminary assessment of utility in a drug discovery setting. Drug metabolism and disposition, 35(3):381–385, 2007. [52] Y. Kitamura, Y. Fujitani, K. Kitagawa, T. Miyazaki, H. Sagara, H. Kawasaki, ..., and Y. Gomita. Effects of imipramine and bupropion on the duration of immobility of ACTH-treated rats in the forced swim test: involvement of the expression of 5-HT2A receptor mRNA. Biological and Pharmaceutical Bulletin, 31(2):246–249, 2008. [53] A. Martin, L. Scahill, and C. Kratochvil. Pediatric Psychopharmacology: Principles and Practice. Oxford University Press, 2011. [54] M. Kotlyar, L. H. Brauer, T. S. Tracy, D. K. Hatsukami, J. Harris, C. A. Bronars, and D. E. Adson. Inhibition of CYP2D6 activity by bupropion. Journal of clinical psychopharmacology, 25(3):226–229, 2005. [55] D. J. Stein, B. Lerer, and S. M. Stahl. Evidence-based psychopharmacology. New York: Cambridge University Press., 2005. [56] M. El Mansari, R. Ghanbari, S. Janssen, and P. Blier. Sustained administration of bupropion alters the neuronal activity of serotonin, norepinephrine but not dopamine neurons in the rat brain. Neuropharmacology, 55(7):1191–1198, 2008. [57] E. C. Lauterbach. Psychotropic drug effects on gene transcriptomics relevant to parkinson’s disease. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 38(2):107–115, 2012. [58] V. C. Bortoli, R. L. Nogueira, and H. Zangrossi Jr. Effects of fluoxetine and buspirone on the panicolytic-like response induced by the activation of 5-HT1A and 5-HT2A receptors in the rat dorsal periaqueductal gray. Psychopharmacology, 183(4):422–428, 2006. [59] C. Spindelegger, R. Lanzenberger, W. Wadsak, L. K. Mien, P. Stein, M. Mitterhauser, ..., and S. Kasper. Influence of escitalopram treatment on 5-HT1A receptor binding in limbic regions in patients with anxiety disorders. Molecular psychiatry, 14(11):1040– 1050, 2009. |