帳號:guest(18.191.86.163)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):駱冠辰
作者(外文):Lo,Kuan Chen
論文名稱(中文):4 維多胞形之互動性視覺化
論文名稱(外文):A Study on Interactive Visualization of 4-Dimensional Polytopes
指導教授(中文):陳煥宗
指導教授(外文):Chen,Hwann Tzong
口試委員(中文):潘雙洪
黃世強
口試委員(外文):Poon,Sheung Hung
Wong,Sai Keung
學位類別:碩士
校院名稱:國立清華大學
系所名稱:資訊系統與應用研究所
學號:102065520
出版年(民國):105
畢業學年度:104
語文別:英文
論文頁數:105
中文關鍵詞:4維空間4維物件4維多胞形4D視覺化視覺化使用者介面
外文關鍵詞:4D space4D objects4D polytopes4D visualizationvisualizing user interface
相關次數:
  • 推薦推薦:0
  • 點閱點閱:499
  • 評分評分:*****
  • 下載下載:2
  • 收藏收藏:0
在4D視覺化上,諸如4 維空間的呈現、運用各種的使用者介面功能來操作
4 維物件等部分進行研究後,我們於此篇論文中,提出了對於4D多胞形上做紋理貼圖等視覺呈現方法,並提供了一個含直覺性的介面的系統。此系統整合了4D 變形轉換、4D動態運動、以及交互式視覺化,其中,所有的動態變化皆可由鍵盤輸入和滑鼠的移動來做控制。我們得到了不錯的執行結果,以及更有效地了與4D多胞形的觀察與互動。
We have investigated several areas in 4D visualization, including 4-dimensional space rendering, various user interface elements to manipulate the 4D objects. In this
paper, we describe methods for visualizing 4D polytopes that are texture-mapped, and present an environment that achieves integration between 4D trans- formations, 4D motions and interactive visualization with an intuitive interfaces. In the environment, all the motions in 3D and 4D can be performed under the control of key-frame and mouse. We expect the system runs smoothly and the observation and interaction with 4D polytopes are effective for intuitive understanding of 4D polytopes.
chapter 1 Introduction 1
1.1 Related Works 1
1.2 Contribution 2
1.3 Thesis Organization 3
chapter 2 Preliminaries and Visualizing Environment Overview 4
2.1 Preliminaries 4
2.2 Visualizing Environment Overview 13
Chapter 3 Environment Database 15
3.1 Geometric Information 15
3.2 Topological Information 19
Chapter 4 Regular 4-Polytopes Coloring Scheme 24
4.1 Phase generation 25
4.2 Vertices-colors matching 27
4.3 Color Ramp Mapping of Faces with Transparency Determination 30
Chapter 5 Uniform 4-Polytopes Colouring Scheme 32
5.1 Phase generation 33
5.2 Vertices-colors matching 36
5.3 Color Ramp Mapping of Faces with Transparency Determination 39
Chapter 6 Implementation and Experimentation 42
6.1 Implementation 42
6.2 4D Models 43
6.3 Experimentation 44
Chapter 7 Conclusions 84
[1] H. S. M. Coxeter. Regular Polytopes. Dover books on advanced mathematics. Dover Publications, 1973.
[2] H.S.M. Coxeter. Introduction to Geometry. Wiley Classics Library. Wiley, 1989.
[3] S. K. Feiner and C. Beshers. Visualizing n-dimensional virtual worlds with n-vision. In Proceedings of the 1990 Symposium on Interactive 3D Graphics, pages 37–38. ACM, 1990.
[4] A. J. Hanson and P.-A. Heng. Illuminating the fourth dimension. IEEE Computer Graphics and Applications, 12(4):54–62, 1992.
[5] T. Banchoff. Beyond the Third Dimension: Geometry, Computer Graphics, and Higher Dimensions. Scientific American Library series. Scientific American Library, 1996.
[6] K. Kaino. Folding tetrahedra and four-dimensional origami. Forma, 14(1):49–56, 2000.
[7] A. Inoue, R. Itohara, K. Yajima, and K. Kaino. Cg image generation of four- dimensional origami. The Journal of the Society for Art and Science, 4(4):151–158, 2005.
[8] A. M. Noll. A computer technique for displaying n-dimensional hyperobjects. Com- mun. ACM, 10(8):469–473, 1967.
[9] B. Hausman and H.-P. Seidel. Visualization of regular polytopes in three and four dimensions. Computer Graphics Forum 13, pages 305–316, 1994.
[10] S. Zacharias and D. Velichova. Projection from 4d to 3d. Journal for Geometry and Graphics, 4(1):55–69, 2000.
[11] S. Hollasch. Four-space visualization of 4d objects. Master’s thesis, Arizona State University, USA, 1991.
[12] M. D’Zmura, P. Colantoni, and G. Seyranian. Virtual environments with four or more spatial dimensions. Presence, 9(6):616–631, 2000.
[13] X. Yan, C.-W. Fu, and A. J. Hanson. Multitouching the fourth dimension. Computer, 45(9):80–88, 2012.
[14] M. Takanobu, S. Yukihito, and H. Shuji. Four-dimensional viewing direction con- trol by principal vanishing points operation and its application to four-dimensional fly-through experience. In Proceedings of the 25th Australian Computer-Human Interaction Conference: Augmentation, Application, Innovation, Collaboration, pages 95–104. ACM, 2013.
[15] J. H. Conway and M. J.T. Guy. Four-dimensional archimedean polytopes. In Proceed- ings of the Colloquium on Convexity at Copenhagen, pages 38–39, 1965.
[16] N. W. Johnson. Convex polyhedra with regular faces. Canadian Journal of Mathe- matics, 18(1), 1966.
[17] N. W. Johnson. The Theory of Uniform Polytopes and Honeycombs. PhD thesis, University of Toronto, 1966.
[18] N. W. Johnson. Uniform polytopes. Cambridge University Press, 2000. [19] H. Küppers. The Basic Law of Color Theory. Barron’s New Jersey, 1982.
[20] G. Gonthier. Formal proof —the four-color theorem. Notices of the AMS, 55(11):1382–1393, 2008.
[21] H. Hudson. Four colors do not suffice. The American Mathematical Monthly, 110(5): 417–423, 2003.
[22] E. B. Dam, M. Koch, and M. Lillholm. Quaternions, interpolation and animation. Technical report, Department of Computer Science, University of Copenhagen, Den- mark, 1998.
[23] L. Vicci. Quaternions and rotations in 3-space, the algebra and geometric interpreta- tion. Technical report, Department of Computer Sciences, UNC, 2001.
[24] T. A. Foley and G. M. Nielson. Practical techniques for producing 3d graphical images. VMEbus Systems, pages 65–73, 1987.
[25] F. S. Hill. Jr. Computer Graphics. Macmillan Publishing Co., 1990.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *