|
[1] H. S. M. Coxeter. Regular Polytopes. Dover books on advanced mathematics. Dover Publications, 1973. [2] H.S.M. Coxeter. Introduction to Geometry. Wiley Classics Library. Wiley, 1989. [3] S. K. Feiner and C. Beshers. Visualizing n-dimensional virtual worlds with n-vision. In Proceedings of the 1990 Symposium on Interactive 3D Graphics, pages 37–38. ACM, 1990. [4] A. J. Hanson and P.-A. Heng. Illuminating the fourth dimension. IEEE Computer Graphics and Applications, 12(4):54–62, 1992. [5] T. Banchoff. Beyond the Third Dimension: Geometry, Computer Graphics, and Higher Dimensions. Scientific American Library series. Scientific American Library, 1996. [6] K. Kaino. Folding tetrahedra and four-dimensional origami. Forma, 14(1):49–56, 2000. [7] A. Inoue, R. Itohara, K. Yajima, and K. Kaino. Cg image generation of four- dimensional origami. The Journal of the Society for Art and Science, 4(4):151–158, 2005. [8] A. M. Noll. A computer technique for displaying n-dimensional hyperobjects. Com- mun. ACM, 10(8):469–473, 1967. [9] B. Hausman and H.-P. Seidel. Visualization of regular polytopes in three and four dimensions. Computer Graphics Forum 13, pages 305–316, 1994. [10] S. Zacharias and D. Velichova. Projection from 4d to 3d. Journal for Geometry and Graphics, 4(1):55–69, 2000. [11] S. Hollasch. Four-space visualization of 4d objects. Master’s thesis, Arizona State University, USA, 1991. [12] M. D’Zmura, P. Colantoni, and G. Seyranian. Virtual environments with four or more spatial dimensions. Presence, 9(6):616–631, 2000. [13] X. Yan, C.-W. Fu, and A. J. Hanson. Multitouching the fourth dimension. Computer, 45(9):80–88, 2012. [14] M. Takanobu, S. Yukihito, and H. Shuji. Four-dimensional viewing direction con- trol by principal vanishing points operation and its application to four-dimensional fly-through experience. In Proceedings of the 25th Australian Computer-Human Interaction Conference: Augmentation, Application, Innovation, Collaboration, pages 95–104. ACM, 2013. [15] J. H. Conway and M. J.T. Guy. Four-dimensional archimedean polytopes. In Proceed- ings of the Colloquium on Convexity at Copenhagen, pages 38–39, 1965. [16] N. W. Johnson. Convex polyhedra with regular faces. Canadian Journal of Mathe- matics, 18(1), 1966. [17] N. W. Johnson. The Theory of Uniform Polytopes and Honeycombs. PhD thesis, University of Toronto, 1966. [18] N. W. Johnson. Uniform polytopes. Cambridge University Press, 2000. [19] H. Küppers. The Basic Law of Color Theory. Barron’s New Jersey, 1982. [20] G. Gonthier. Formal proof —the four-color theorem. Notices of the AMS, 55(11):1382–1393, 2008. [21] H. Hudson. Four colors do not suffice. The American Mathematical Monthly, 110(5): 417–423, 2003. [22] E. B. Dam, M. Koch, and M. Lillholm. Quaternions, interpolation and animation. Technical report, Department of Computer Science, University of Copenhagen, Den- mark, 1998. [23] L. Vicci. Quaternions and rotations in 3-space, the algebra and geometric interpreta- tion. Technical report, Department of Computer Sciences, UNC, 2001. [24] T. A. Foley and G. M. Nielson. Practical techniques for producing 3d graphical images. VMEbus Systems, pages 65–73, 1987. [25] F. S. Hill. Jr. Computer Graphics. Macmillan Publishing Co., 1990. |