帳號:guest(3.147.45.121)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):麥智傑
作者(外文):Mai, Chih Chieh
論文名稱(中文):在非完美通道估測下基於訊號干擾比最大化準則之迭代式干擾對齊技術
論文名稱(外文):Iterative Interference Alignment Based on SIR Maximization under Imperfect Channel Estimation
指導教授(中文):王晉良
指導教授(外文):Wang, Chin Liang
口試委員(中文):歐陽源
吳仁銘
黃家麒
學位類別:碩士
校院名稱:國立清華大學
系所名稱:通訊工程研究所
學號:102064552
出版年(民國):105
畢業學年度:104
語文別:中文英文
論文頁數:23
中文關鍵詞:迭代式干擾對齊技術非完美通道估測
外文關鍵詞:Iterative Interference AlignmentImperfect Channel Estimation
相關次數:
  • 推薦推薦:0
  • 點閱點閱:460
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
近年來,干擾對齊技術在無線通訊系統中逐漸被重視,其原因為此技術可以有效消除使用者之間的干擾,並達到最大的訊號空間自由度。然而,標準的干擾對齊技術對通道估測誤差相當敏感,在非完美通道資訊的情況下,其效能表現會明顯下降。在本論文中,我們針對多輸入多輸出干擾通道發展一個具有強健特性的干擾對齊技術;根據通道估測誤差的統計平均特性,提出一個迭代式干擾對齊演算法以設計最佳的預編碼器與解碼器。在每一次迭代的過程中,我們使用傳統干擾對齊方法來更新預編碼器,並依據最大訊號干擾比(signal-to-interference ratio;SIR)準則來設計解碼器,其中SIR定義為:接收端所欲接收的訊號(投影於無干擾訊號子空間)與「洩漏」的干擾訊號(來自干擾訊號子空間)之間的比值。與現有相關干擾對齊技術比較,我們所提出之迭代式干擾對齊技術具有較大的通道容量與較少的運算複雜度。
Interference alignment (IA) has received great attention recently because it can exploit all available degrees of freedom in a multiuser interference channel to eliminate interference among users effectively. However, the standard IA approach is sensitive to channel estimation errors, and the performance would be degraded significantly when perfect channel state information (CSI) is not available. In this thesis, we consider how to design a robust IA scheme for multiuser multiple-input multiple-output interference channels under imperfect channel estimation. We propose an iterative IA scheme with the corresponding precoder and decoder optimally designed in an alternate way based on an independent and identically Gaussian distributed error model with bounded expected norm. At each iteration, the precoder design is updated using the conventional IA approach and the decoder design is updated according to the maximum signal-to-interference ratio (SIR) criterion, where the SIR is defined as the ratio of the desired signal projected onto the interference-free subspace and the “interference leakage” spilling out from the interference subspace. As compared to previous related works under a similar channel error model, the proposed iterative IA approach achieves better sum-capacity performance with less computational complexity.
Abstract..................i
Content..................ii
List of Figures..................iii
Chapter 1 Introduction..................1
Chapter 2 Background..................4
A. System Model..................4
B. The Conventional IA Scheme..................5
C. The Effect of Imperfect CSI on IA..................7
Chapter 3 A Robust Iterative IA Scheme..................8
A. An Initial Precoder Design..................8
B. A Decoder Design Based on SIR Maximization..................9
C. An Iterative Design of the Precoder and the Decoder..................12
D. Complexity Analysis..................13
Chapter 4 Simulation Results..................15
Chapter 5 Conclusion..................20
References..................21
[1] T. Zahir, K. Arshad, A. Nakata, and K. Moessner, “Interference management in femtocells,” IEEE Commun. Surveys Tuts., vol. 15, no. 1 pp. 293–311, Feb. 2012.
[2] W. Nam, D. Bai, J. Lee, and I. Kang, “Advanced interference management for 5G cellular networks,” IEEE Commun. Mag., vol. 52, no. 5, pp. 52–60, May 2014.
[3] N. Saquib, E. Hossain, L. B. Le, and D. I. Kim, “Interference management in OFDMA femtocell networks: Issues and approaches,” IEEE Wireless Commun., vol. 19, no. 3, pp. 86–95, Jun. 2012.
[4] E. Hossain, M. Rasti, H. Tabassum, and A. Abdenlnasser, “Evolution toward 5G multi-tier cellular wireless networks: An interference management perspective,” IEEE Wireless Commun., vol. 21, no. 3, pp. 118–127, Jun. 2014.
[5] S. A. Jafar and S. Shamai, “Degrees of freedom region for the MIMO X channel,” IEEE Trans. Inf. Theory, vol. 54, no. 1, pp. 151–170, Jan. 2008.
[6] S. A. Jafar and M. J. Fakhereddin, “Degrees of freedom for the MIMO interference channel,” IEEE Trans. Inf. Theory, vol. 53, no. 7, pp. 2637–2642, Jul. 2007.
[7] V. R. Cadambe and S. A. Jafar, “Interference alignment and degrees of freedom of the K-user interference channel,” IEEE Trans. Inf. Theory, vol. 54, no. 8, pp. 3425–3441, Aug. 2008.
[8] M. Torbatian, H. Najafi, and M. O. Damen, “Asynchronous interference alignment,” IEEE Trans. Wireless Commun., vol. 11, no. 9, pp. 3148–3157, Jul. 2012.
[9] J. S. Kim, “Antenna configurations for MIMO interference alignment in three-user heterogeneous systems,” IEEE Trans. Veh. Technol., vol. 64, no. 6, pp. 2710–2714, Jul. 2014.
[10] X. Chen and C. Yuen, “On interference alignment with imperfect CSI: characterizations of outage probability, ergodic rate and SER,” IEEE Trans. Veh. Technol., vol. 65, no. 1, pp. 47–58, Jan. 2016.
[11] Z. Feng and T. Kaiser, “A comparison of robustness between interference alignment and direct transmission,” in Proc. 2012 IEEE International Symposium on Signals, Systems, and Electronics, Potsdam, Germany, Oct. 2012.
[12] S. W. Peters and R. W. Heath, Jr., “Interference alignment via alternating minimization,” in Proc. 2009 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2009), Taipei, Taiwan, Apr. 2009, pp. 2445–2448.
[13] K. Gomadam, V. R. Cadambe, and S. A. Jafar, “A distributed numerical approach to interference alignment and applications to wireless interference networks,” IEEE Trans. Inf. Theory, vol. 57, no. 6, pp. 3309–3322, Jun. 2011.
[14] S. W. Peters and R. W. Heath, Jr., “Cooperative algorithms for MIMO interference channels” IEEE Trans. Veh. Technol., vol. 60, no. 1, pp. 206–218, Jan. 2011.
[15] H. Du, T. Ratnarajah, M. Sellathurai, and C. Papadias, “A robust interference alignment technique for the MIMO interference channel with uncertainties,” in Proc. 2013 IEEE International Conference on Communications (ICC 2013), Budapest, Hungary, Jun. 2013, pp. 154–158.
[16] D. A.Schmidt, C. Shi, R. A. Berry, M. L. Honig, and W. Utschick, “Minimum mean squared error interference alignment,” in Proc. Forty-Third Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, Nov. 2009, pp. 1106–1110.
[17] H. Shen, B. Li, M. Tao, and Y. Luo, “The new interference alignment scheme for the MIMO interference channel,” in Proc. 2010 IEEE Wireless Communications and Networking Conference (WCNC 2010), Sydney, Australia, Apr. 2010.
[18] Li. Qingzhong, Gu. Xuemai, and Li Hanqing, “MMSE interference alignment with imperfect CSI,” in Proc. 2012 Second Instrumentation, Measurement, Computer, Communication and Control, Harbin, China, Dec. 2012, pp. 197–201.
[19] D. C. Lay, S. R. Lay, and J. J. Mcdonald, Linear Algebra and its Applications, 5th ed. Washington, USA: Pearson Press, 2014.
[20] H. Lütkepohl, Handbook of Matrices. Berlin, Germany: Wiley Press, 1997.
[21] G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd ed. Baltimore, MD, USA: Johns Hopkins Univ. Press, 1996.
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *