帳號:guest(18.221.107.62)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林敬彥
作者(外文):Lin, Jing Yan
論文名稱(中文):上行之非正交分頻多工系統設計與分析
論文名稱(外文):Non-Orthogonal Multiple Access Uplink System Design and Analysis
指導教授(中文):吳仁銘
指導教授(外文):Wu, Jen Ming
口試委員(中文):蔡育仁
翁詠祿
口試委員(外文):Tsai, Yuh Ren
Ueng, Yeong Luh
學位類別:碩士
校院名稱:國立清華大學
系所名稱:通訊工程研究所
學號:102064537
出版年(民國):104
畢業學年度:104
語文別:英文
論文頁數:52
中文關鍵詞:非正交分頻多工頻譜使用效率多天線訊號偵測
外文關鍵詞:non-orthogonal multiple accessspectral efficiencyMIMO detection
相關次數:
  • 推薦推薦:0
  • 點閱點閱:213
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
隨著手持行動裝置數量的快速增加,因此在有限的頻段內,未來如何能提供大量的資料傳輸是一個很重要的問題。在現在的標準下,像是Long-Term Evolution (LTE),是以正交多工(OMA) 技術為基礎做設計的。然而,這並沒有充分地利用頻譜資源。因此,非正交分頻多工(NOMA) 這項技術就被提出,用來改善資料傳輸量。不同於正交分頻多工,非正交分頻多工系統中,每個頻譜資源可以分配給多個使用者,達到較佳的頻譜使用效率。但是,同個頻譜內的使用者彼此之間會造成干擾,使得偵測訊號困難。在現在大部分的非正交分頻多工研究中,大部分都是下行系統,使用者只能使用Successive Interference Cancellation(SIC) 做為偵測訊號的方法,因為使用者通常只有單天線,使得偵測訊號效果不佳。在本篇論文中,我們著重在上行非正交分頻多工系統的部分。我們提出了頻段分配的演算法,將這些頻段分給使用者以達到最佳的使用效率,並且在固定使用者的數量(K)下,試著去找到L(每個頻段可以分給多少使用者) 和Ns(每個使用者可以使用多少頻段)的組合能達到最佳的資料傳輸量。在基地台端,因為頻段與頻段彼此之間不會互相影響,所以我們可以分別對每個頻段做偵測訊號的動作。並且可以利用多天線的好處,使用不同多天線偵測訊號的方法去做處理。在錯誤率上的表現比下行系統還要來的好。
With the rapid growth of number of mobile devices, to achieve the huge throughputs becomes an important issue in the future. In the current mobile communication systems (such as Long-Term Evolution(LTE)), Orthogonal Multiple Access (OMA) techniques has been adopted. However, it does not fully utilize the spectrum resource. Therefore, Non-Orthogonal Multiple Access (NOMA) was proposed to enhance the performance of throughputs.
Different from OMA system, each subband can be allocated to more than one users in NOMA system, which achieves better spectrum efficiency. However, the users cause interference to other users in the same subband, making detection process more complex. In the current NOMA researches, it mainly focus on downlink system, the Successive Interference Cancellation (SIC) was used for detection. However, the performance of Bit Error Rate
(BER) is not good enough. In this thesis, we focus on uplink NOMA system. We propose an algorithm to allocate the subbands to users, and we try to find the best combination of L(number of users on each subband) and Ns(number of subbands that each user can use) to
achieve the maximum sum rates for fixed K(the number of users). At the base station, we perform detection subband by subband, since subbands will not cause interference to each other. In uplink system, multiple antennas can be used for detection. Several low complexity multiple input multiple output (MIMO) detection algorithms are applied. The performance of BER will be better than downlink system.
Chinese Abstract i
English Abstract ii
Contents iii
1 Introduction 1
2 Background 5
2.1 OMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.1 FDMA Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.2 OFDM Systems [1] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.3 OFDMA System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Prior Arts of NOMA and SCMA Systems . . . . . . . . . . . . . . . . . . . 17
2.2.1 NOMA [7] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.2 SCMA [13] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3 Proposed Uplink NOMA Scheme 21
3.1 System Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 Subband and Power Allocation for NOMA Systems . . . . . . . . . . . . . . 24
3.2.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2.2 Proposed Subband and Power Allocation Algorithm . . . . . . . . . . 28
3.3 Subband Assignments for Every Users . . . . . . . . . . . . . . . . . . . . . 32
3.4 MIMO Detection for NOMA Systems . . . . . . . . . . . . . . . . . . . . . . 34
3.4.1 Problem Re-formulation . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.4.2 MIMO Detection Algorithms [2] . . . . . . . . . . . . . . . . . . . . . 35
4 Simulations 38
4.1 The Comparison of Average Rates Per User for Fixed K . . . . . . . . . . . 38
4.2 The Comparison of Bit Error Rate (BER) with Different Number of L . . . 42
4.3 The Comparison of Bit Error Rate (BER) with Different MIMO Detection
Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.4 The Comparison of Bit Error Rate (BER) with Different Number of Receive
Antennas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.5 The Comparison on Overall Throughputs for Different Number Subbands
Allocated to Each User . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.6 The Comparison for Average Rates Per User for the Above Three Cases . . . 48
5 Conclusions 50
Bibliography 51
[1] Proakis, Digital Communications 5th Edition. McGraw Hill, 2007.
[2] R. Bohnke, D. Wubben, V. Kühn, and K.-D. Kammeyer, “Reduced complexity mmse detection for blast architectures,” in IEEE Global Telecommunications Conference, 2003.GLOBECOM ’03, vol. 4, pp. 2258– 2262 vol. 4, Dec 2003.
[3] J. Andrews, S. Buzzi, W. Choi, S. Hanly, A. Lozano, A. Soong, and J. Zhang, “What will 5g be?,” IEEE Journal on Selected Areas in Communications, vol. 32, pp. 1065–
1082, June 2014.
[4] K. Kim, H. Kim, and Y. Han, “Subcarrier and power allocation in ofdma systems,” in 2004 IEEE 60th Vehicular Technology Conference, 2004. VTC2004-Fall, vol. 2, pp. 1058– 1062 Vol. 2, Sept 2004.
[5] P. Wang, J. Xiao, and L. Ping, “Comparison of orthogonal and non-orthogonal approaches to future wireless cellular systems,” IEEE Vehicular Technology Magazine, vol. 1, pp. 4– 11, Sept 2006.
[6] M. Al-Imari, P. Xiao, M. Imran, and R. Tafazolli, “Uplink non-orthogonal multiple access for 5g wireless networks,” in 2014 11th International Symposium on Wireless Communications Systems (ISWCS), pp. 781– 785, Aug 2014.
[7] A. Benjebbour, Y. Saito, Y. Kishiyama, A. Li, A. Harada, and T. Nakamura, “Concept and practical considerations of non-orthogonal multiple access (noma) for future radio access,” in 2013 International Symposium on Intelligent Signal Processing and Communications Systems (ISPACS), pp. 770– 774, Nov 2013.
[8] S. Timotheou and I. Krikidis, “Fairness for non-orthogonal multiple access in 5g systems,” IEEE Signal Processing Letters, vol. 22, pp. 1647– 1651, Oct 2015.
[9] X. Chen, A. Benjebbour, A. Li, and A. Harada, “Multi-user proportional fair scheduling for uplink non-orthogonal multiple access (noma),” in 2014 IEEE 79th Vehicular Technology Conference (VTC Spring), pp. 1– 5, May 2014.
[10] H. Nikopour and H. Baligh, “Sparse code multiple access,” in 2013 IEEE 24th International Symposium on Personal Indoor and Mobile Radio Communications (PIMRC),
pp. 332– 336, Sept 2013.
[11] M. Taherzadeh, H. Nikopour, A. Bayesteh, and H. Baligh, “Scma codebook design,” in 2014 IEEE 80th Vehicular Technology Conference (VTC Fall), pp. 1– 5, Sept 2014.
[12] H. Nikopour, E. Yi, A. Bayesteh, K. Au, M. Hawryluck, H. Baligh, and J. Ma, “Scma for downlink multiple access of 5g wireless networks,” in 2014 IEEE Global Communications Conference (GLOBECOM), pp. 3940– 3945, Dec 2014.
[13] S. Zhang, X. Xu, L. Lu, Y. Wu, G. He, and Y. Chen, “Sparse code multiple access: An energy efficient uplink approach for 5g wireless systems,” in 2014 IEEE Global
Communications Conference (GLOBECOM), pp. 4782– 4787, Dec 2014.
[14] W. Yu, W. Rhee, S. Boyd, and J. Cioffi, “Iterative water-filling for gaussian vector multiple-access channels,” IEEE Transactions on Information Theory, vol. 50, pp. 145–152, Jan 2004.
(此全文限內部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *