帳號:guest(18.227.111.30)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):黃承毓
作者(外文):Huang, Cheng Yu
論文名稱(中文):應用於物聯網之支援大量連結雙正交分頻多工之波形設計
論文名稱(外文):Pulse Shape Design of Biorthogonal Frequency Division Multiplexing with Massive Connection Support for IoT
指導教授(中文):吳仁銘
指導教授(外文):Wu, Jen Ming
口試委員(中文):蔡育仁
翁詠祿
口試委員(外文):Tsai, Yu Jen
Weng, Yung Lu
學位類別:碩士
校院名稱:國立清華大學
系所名稱:通訊工程研究所
學號:102064533
出版年(民國):104
畢業學年度:104
語文別:英文中文
論文頁數:47
中文關鍵詞:正交分頻多工雙正交分頻多工模稜函數物聯網
外文關鍵詞:OFDMBFDMAmbiguity FunctionInternet of Thing
相關次數:
  • 推薦推薦:0
  • 點閱點閱:197
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
未來,因為自動互連裝置數量快速成長,物聯網將會是第五代行動通訊無線網路系統中不可或缺的一部分。物聯網最主要的挑戰是大量連接的議題。論文中我們降低符際與載波間干擾效應為了提高在時頻分散通道中物聯網裝置可負荷的數量利用最佳化雙正交分頻多工技術的效能。雙正交分頻多工技術是發明來降低干擾透過一個有彈性的訊號波形設計,我們採用具有良好特性降低干擾的B 樣條和高斯波形和使用名為典型高柏視窗計算接收波形。特別是我們最佳化雙正交分頻多工高斯波形利用最小化尾模稜函數。模擬結果顯示所提出的雙正交分頻多工勝過傳統正交分頻多工在干擾能量、訊號干擾比及物聯網裝置的負載量於時頻分散通道。本論文提出的雙正交分頻多工不僅達到降低干擾,並同時增加系統可支援的裝置數量。
In future, Internet-of-Thing (IoT) will be the indispensable part of development of 5G wireless communication system due to rapid growth of devices with an ability to communicate autonomously. The major challenge is massive connection issue. In this thesis, we reduce intersymbol interference (ISI) and intercarrier interference (ICI) for enhancing the number of IoT devices in high mobile environment by optimizing the performance of Biorthogonal Frequency Division Multiplexing (BFDM). BFDM is invented to reduce the interference through a flexible design of the signal pulse shaping. We apply B-splines and Gaussian pulse for pulse shape which have good properties to reduce ISI/ICI and use an algorithm named canonical Gabor tight window to calculate receive pulses. In particular, we optimize Gaussian pulse in BFDM by minimizing the tail of the ambiguity function. Simulation results show that the proposed BFDM outperforms the conventional OFDM in ISI/ICI power, SIR and the IoT devices load in time-frequency dispersive channels. BFDM not only achieves the reduction of interference, but also increases the number of devices which system could support.
Chinese Abstract i
English Abstract ii
Contents iii
1 Introduction 1
2 Backgrounds 5
2.1 Interner of Things (IoT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.1 Evolution and Development of IoT . . . . . . . . . . . . . . . . . . . 5
2.1.2 Machine-To-Machine (M2M) Communication System . . . . . . . . . 6
2.2 Conventional Orthogonal Frequency Division Multiplexing (OFDM) . . . . . 9
2.2.1 Frequency Division Multiplexing (FDM) . . . . . . . . . . . . . . . . 10
2.2.2 Orthogonal Frequency Division Multiplexing (OFDM) System [1] . . 12
3 Proposed Pulse Shape Design of Biorthogonal Frequency Division Multiplexing
(BFDM) 18
3.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2.1 Transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2.2 Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2.3 BFDM Signaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3 Pulse Shape Used in BFDM . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.3.1 Transmit Pulse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.3.2 Design of Receive Pulse . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.4 ISI/ICI Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.5 Optimization of Gaussian Pulse . . . . . . . . . . . . . . . . . . . . . . . . . 28
4 Simulations 31
4.1 Ambiguity Function of Gaussian pulse . . . . . . . . . . . . . . . . . . . . . 31
4.2 Comparison of Transmit/Receive pulse . . . . . . . . . . . . . . . . . . . . . 33
4.3 Comparison of Power Spectrum Density . . . . . . . . . . . . . . . . . . . . 35
4.4 Comparison of Mean ISI/ICI Power . . . . . . . . . . . . . . . . . . . . . . . 37
4.5 Performance of Signal-to-Interference Ratio . . . . . . . . . . . . . . . . . . 39
4.6 Maximum Number of Subcarriers in Fixed Bandwidth . . . . . . . . . . . . 41
5 Conclusions 44
Bibliography 45
[1] Y. H. Hu, “Using FFT/IFFT structure for inceasing spectrul efficiency of LTE bandwidth
in OFDM,” in Communication Components Magazine, April 2014.
[2] G. Wu, S. Talwar, K. Johnsson, N. Himayat, and K. Johnson, “M2M: From mobile to
embedded internet,” IEEE Communications Magazine, vol. 49, pp. 36 – 43, April 2011.
[3] I.-T. S. G. 13, “Itu-t y. 2060, overview of the internet of things,” in Telecommnication
Standardization Sector of ITU, pp. 1–14, June 2015.
[4] G. Wunder, P. Jung, M. Kasparick, T. Wild, F. Schaich, Y. Chen, S. Brink, I. Gaspar,
N. Michailow, A. Festag, L. Mendes, N. Cassiau, D. Ktenas, M. Dryjanski, S. Pietrzyk,
B. Eged, P. Vago, and F. Wiedmann, “5GNOW: non-orthogonal, asynchronous waveforms
for future mobile applications,” IEEE Commun. Mag., vol. 52, pp. 97 – 105,
February 2014.
[5] F. Schaich and T. Wild, “Waveform contenders for 5G —OFDM vs. FBMC vs. UFMC,”
in Proceedings of 6th International Symposium on Communications, Control and Signal
Processing (ISCCSP 2014), pp. 457 – 460, 2014.
[6] A. Peled and A. Ruiz, “Frequency domain data transmission using reduced computational
complexity algorithms,” Proc. IEEE ICASSP, vol. 5, pp. 964–967, April 1980.
[7] B. Farhang-Boroujeny, “OFDM versus filter bank multicarrier,” Signal Processing Magazine,
IEEE, vol. 28, pp. 92 – 112, 2011.
[8] M. Bellanger, “Physical layer for future broadband radio systems,” in Radio and Wireless
Symposium (RWS), 2010 IEEE, pp. 436 – 439, 2010.
[9] V. Vakilian, T. Wild, F. Schaich, S. ten Brink, and J.-F. Frigon, “Universal-filtered
multi-carrier technique for wireless systems beyond lte,” in 9th Int’l. Wksp. Broadband
Wireless Access, IEEE GLOBECOM’13, pp. 223 – 228, 2013.
[10] W. Kozek and A. Molisch, “Nonorthogonal pulseshapes for multicarrier communications
in doubly dispersive channels,” IEEE Journal, Selected Areas in Communications,
vol. 16, no. 8, pp. 1579–1589, October 1998.
[11] D. Schafhuber, G. Matz, and F. Hlawatsch, “Pulse-shaping OFDM/BFDM systems for
time-varying channels: ISI/ICI analysis, optimal pulse design, and efficient implementation,”
in Proc. IEEE PIMRC-02, pp. 1012–1016, September 2002.
[12] M. Kasparick, G. Wunder, G. Wunder, P. Jung, and D. Maryopi, “Bi-orthogonal waveforms
for 5G random access with short message support,” in Proc. of the European
Wireless Conf., pp. 293 – 298, May 2014.
[13] K. Ashton, “That‘internet of things’thing, in the real world things matter more than
ideas,” in RFID Journal, June 2009.
[14] C. M. University, “The ”only” coke machine on the internet,” in Carnegie Mellon University,
November 2014.
[15] Q. S. Fraser, “The trojan room coffee pot,” in University of Cambridge, May 1995.
[16] Y. Mehmood, N. Haider, W. Afzal, U. Younas, I. Rashid, and M. Imran, “Impact
of massive MIMO systems on future M2M communication,” in 2013 IEEE Malaysia
International Conference ,Communications (MICC), pp. 534 – 537, November 2013.
[17] I.-R. Group, “Report m. 2134, requirements related to technical performance for imtadvanced
radio interface(s),” in ITU Radiocommunication Sector, pp. 1–8, November
2008.
[18] H. Bolcskei and F. Hlawatsch, “Discrete zak transforms, polyphase transforms, and
applications,” IEEE Trans., Signal Processing, vol. 45, pp. 851–866, April 1997.
[19] P. Bello, “Characterization of randomly time-variant linear channels,” IEEE Trans.
Commun. Syst., vol. CS-11, pp. 360–393, December 1963.
[20] F.-M. Han and X.-D. Zhang, “Wireless multicarrier digital transmission via weylheisenberg
frames over time-frequency dispersive channels,” IEEE Trans. Communications,
vol. 57, pp. 1721 – 1733, June 2009.
[21] J. Proakis and M. Salehi, Digital Communications. McGraw-Hill Education, 2008.
[22] M. Zibulski and Y. Zeevi, “Oversampling in the gabor scheme,” IEEE Trans. Signal
Processing, vol. 41, pp. 2679–2687, August 1993.
[23] P. Sondergaard, “Efficient algorithms for the discrete gabor transform with a long FIR
window,” Journal of Fourier Analysis and Applications, vol. 18, no. 3, pp. 456–470,
2012.
[24] K. Gröchenig, Foundations of Time-Frequency Analysis. Birkhäuser Basel, 2001.
(此全文限內部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *