帳號:guest(3.149.238.79)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):沈柏君
作者(外文):Shen, Po Chun
論文名稱(中文):在4G LTE物聯網中針對即時資料回報之省電排程演算法
論文名稱(外文):Energy-Efficient Scheduling Algorithms for Real-Time Data Reporting in 4G LTE Machine-to-Machine Communication Networks
指導教授(中文):楊舜仁
指導教授(外文):Yang, Shun Ren
口試委員(中文):高榮駿
顏在賢
楊舜仁
口試委員(外文):Kao, Jung Chun
Gan, Chai-Hien
Yang, Shun Ren
學位類別:碩士
校院名稱:國立清華大學
系所名稱:通訊工程研究所
學號:102064530
出版年(民國):104
畢業學年度:103
語文別:中文英文
論文頁數:46
中文關鍵詞:節能LTE物聯網即時回報系統
外文關鍵詞:即時回報系統LTEMachine-to-Machine(M2M)real-time data reporting
相關次數:
  • 推薦推薦:0
  • 點閱點閱:385
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
4G LTE可以提供即時回報系統的應用程式良好的服務品質,因此物聯網這項技術已經被大量的運用在4G LTE的環境。在許多的文獻中,4G LTE有許多上傳的排程演算法,但大多的演算法是針對人對人的應用程式,並非針對物聯網的裝置;另外大部份物聯網的裝置都是裝載電池,因為電池能提供的電量是有限制的,所以我們必須透過排程演算法的排程結果減少耗能;此外,現在的文獻不是考慮睡眠時間最大化,就是傳送能量最小化,並沒有同時考慮這兩者。在我們的論文裡,我們有系統地同時考慮所有耗能的情況,並提出了兩個節能的排程演算法,這兩個排程演算法的選用是根據裝置跟LTE基地台的距離。第一個演算法是針對距離較遠的情況,它致力於減低傳送資料時候的能量;第二個演算法是針對距離較近的情況,它致力於減少裝置的活躍時間,並同時決定裝置是否要進入睡眠狀態或是只在閒置狀態。實驗結果表示我們提出的演算法比其他的演算法省電,此外我們的演算法依然可以維持較高的排程成功率及公平性。
Machine-to-Machine (M2M) communication technology has been utilized in 4G LTE to support a variety of M2M applications, which require real-time data reporting. In the literature, many uplink scheduling algorithms have been proposed for 4G LTE. Nevertheless, most of these scheduling algorithms are mainly designed for human-to-human applications, not for M2M applications. These scheduling algorithms typically focus on the fact that the machines in M2M communication are battery-powered. Considering that the energy budget of the battery is limited, these scheduling schemes aim to reduce the energy consumption. We note that the current literatures consider either the problem of sleep-time maximization or transmission power minimization, but not both. In this paper, we systematically consider all energy-consumption factors of M2M real-time reporting. We propose two energy-efficient scheduling algorithms to minimize the total energy consumption of the machines and these two algorithms depend on the distance between a machine and the serving LTE eNB. The first algorithm is for the case when the distance is long and it aims to reduce the energy consumption for the machines to transmit their data. The second algorithm is for the case when the distance is short. It aims to reduce the active slots of the machines and also determines whether the machines are worth going into the sleep mode or just staying at the active mode but idle state. The experiment results show that our algorithms have better performance than the com- pared algorithms in terms of energy consumption. Additionally, our algorithms can also maintain scheduling success ratios and fairness.
Abstract i
Contents ii
ListofFigures iv
ListofTables v
1 Introduction 1
2 SystemModel 5
2.1SimplifiedSC-FDMAMACModel.......................5
2.2ChannelModel.................................5
2.3PowerConsumption..............................8
3 Energy-EfficiencySchedulingProblem 11
3.1M2MCommunicationNetworkArchitecture.................11
3.2ProblemFormulation..............................12
3.2.1AllocationConstraint..........................14
3.2.2ContiguityConstraint.........................14
3.2.3Real-TimePacketConstraint.....................16
4 SchedulingAlgorithm 17
4.1TheFirstEnergy-EfficiencySchedulingAlgorithm..............17
4.1.1ConceptofAlgorithm1........................17
4.1.2TheProposedAlgorithm1.......................18
4.2TheSecondEnergy-EfficiencySchedulingAlgorithm.............19
4.2.1ConceptofAlgorithm2........................21
4.2.2TheProposedAlgorithm2.......................22
5 Simulation 24
5.1TwoObservationsbehindAlgorithm2....................24
5.1.1TheFirstObsevation..........................24
5.1.2TheSecondObsevation.........................26
5.2PerformanceEvaluation............................26
5.2.1TheImpactofNumberofNodes....................29
5.2.2TheImpactoftheDistance......................32
5.2.3TheComputationTime........................33
6 Conclusion 36
[1] D.J. Dechene and A. Shami. Energy-Aware Resource Allocation Strategies for LTE Uplink with Synchronous HARQ Constraints. IEEE Transactions on Mobile Computing, 13(2):422–433, Feb 2014.
[2] M. Bohge, J. Gross, A. Wolisz and M. Meyer. Dynamic Resource Allocation in OFDM systems: An Overview of Cross-Layer Optimization Principles and Techniques. IEEE Network, 21(1):53–59, Jan 2007.
[3] A. Ahmad and M. Assaad. Polynomial-Complexity Optimal Resource Allocation Framework for Uplink SC-FDMA Systems. IEEE Global Telecomm. Conf. (GlobeCom ’11), pages 1–5, Dec 2011.
[4] F. Sokmen and T. Girici. Uplink Resource Allocation Algorithms for Single-Carrier FDMA Systems. IEEE Wireless Conf. (EW), European, pages339–345, 2010.
[5] I. Wong, O. Oteri and W. Mccoy. Optimal Resource Allocation in Uplink SC-FDMA Systems. IEEE Transactions on Wireless Communications, 8(5):2161–2165, May 2009.
[6] Yi-Bei Chen, Shun-Ren Yang, Jenq-Neng Hwang, and Ming-Zoo Wu. An energy- efficient scheduling algorithm for real-time machine-to-machine(m2m) data reporting. In 2014 IEEE Global Communications Conference (GLOBECOM), pages 4442– 4447, Dec 2014.
[7] Kuo-Chang Ting, Hwang-Cheng Wang, Chih-Cheng Tseng, and Fang-Chang Kuo. Energy-efficient drx scheduling for qos traffic in lte networks. In 2011 IEEE 9th International Symposium on Parallel and Distributed Processing with Applications (ISPA), pages 213–218, May 2011.
[1] D.J. Dechene and A. Shami. Energy-Aware Resource Allocation Strategies for LTE Uplink with Synchronous HARQ Constraints. IEEE Transactions on Mobile Computing, 13(2):422–433, Feb 2014.
[9] Tze-Ping Low, Man-On Pun, Y.P. Hong, and C.-C. J. Kuo. Optimized opportunistic multicast scheduling (oms) over wireless cellular networks. IEEE Transactions on Wireless Communications, 9(2):791–801, February2010.
[10] 3GPPTR36.931. LTE; Evolved Universal Terrestrial Radio Access(E-UTRA) ; Radio Frequency(RF) requirements for LTE Pico Node B(Release9), v9.0.0 edition, May 2011.
[11] M. Caccamo, L.-Y. Zhang, S. Lui, and G. Buttazzo. An Implicit Prioritized Access Protocol for Wireless Sensor Networks. IEEE Real-Time Systems Symposium, pages 39–48, 2002.
[12] C.-L. Liu, and J. W. Layland. Scheduling Algorithms for Multi programming in a Hard-Real-Time Environment. Journal of the ACM, 20(1):46–61, January 1973.
[13] J. C. R. Bennett, and H. Zhang. WF2Q: Worst-Case Fair Weighted Fair Queueing. Proceedings IEEE INFOCOM, 20:120–128, March 1996.
[14] R. Jain, D. Chiu, and W. Hawe. A Quantitative Measure of Fairness and Discrimination for Resource Allocation in Shared Computer Systems. DEC Research Report TR-301, 1984.
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *