|
[1] S. K. Yong and C.-C. Chong, “An overview of multigigabit wireless through millimeter wave technology: Potentials and technical challenges,” EURASIP J. Wireless Comm. and Networking, vol. 2007, 2007. [2] R. Daniels and R. Heath, “60 ghz wireless communications: emerging requirements and design recommendations,” IEEE Veh. Technol. Mag., vol. 2, no. 3, pp. 41–50, 2007. [3] C. Sheldon, M. Seo, E. Torkildson, M. Rodwell, and U. Madhow, “Four-channel spatial multiplexing over a millimeter-wave line-of-sight link,” in Proc. IEEE MTTS Int. Microwave Symp. Dig., 2009, pp. 389–392. [4] L. Ding, R. Liu, B. Jiang, and X. Gao, “Limited feedback unitary precoding using improved euclidean distance metrics for spatial multiplexing systems,” in Proc. Wireless Communications and Signal Processing (WCSP), 2010, pp. 1–6. [5] M. Vu and A. Paulraj, “Mimo wireless linear precoding – using csit to improve link performance,” IEEE Signal Processing Mag., vol. 24, no. 5, pp. 86–105, 2007. [6] E. Larsson, O. Edfors, F. Tufvesson, and T. Marzetta, “Massive mimo for next generation wireless systems,” IEEE Commun. Mag., vol. 52, no. 2, pp. 186–195, Feb 2014. [7] O. Ayach, R. Heath, S. Abu-Surra, S. Rajagopal, and Z. Pi, “Low complexity precoding for large millimeter wave mimo systems,” in Proc. IEEE Int. Conf. Commun. (ICC), Jun. 2012, pp. 3724–3729. [8] Y.-Y. Lee, C.-H.Wang, and Y.-H. Huang, “A hybrid rf/baseband precoding processor based on parallel-index-selection matrix-inversion-bypass simultaneous orthogonal matching pursuit for millimeter wave mimo systems,” IEEE Trans. Signal Process., vol. 63, no. 2, pp. 305–317, Jan 2015. [9] J. Medbo, K. Borner, K. Haneda, V. Hovinen, T. Imai, J. Jarvelainen, T. Jamsa, A. Karttunen, K. Kusume, J. Kyrolainen, P. Kyosti, J. Meinila, V. Nurmela, L. Raschkowski, A. Roivainen, and J. Ylitalo, “Channel modelling for the fifth generation mobile communications,” in 8th European Conference on Antennas and Propagation (EuCAP 2014), Apr 2014, pp. 219–223. [10] S. Jaeckel, L. Raschkowski, K. Borner, and L. Thiele, “Quadriga: A 3-d multi-cell channel model with time evolution for enabling virtual field trials,” IEEE Trans. Antennas Propag., vol. 62, no. 6, pp. 3242–3256, Jun 2014. [11] J. Tropp, A. Gilbert, and M. Strauss, “Simultaneous sparse approximation via greedy pursuit,” in Proc. IEEE Int. Conf. Acoustics, Speech, Signal Process. (ICASSP), vol. 5, 2005, pp. 721–724. [12] A. Saleh and R. Valenzuela, “A statistical model for indoor multipath propagation,” IEEE J. Select. Areas Commun., vol. 5, no. 2, pp. 128–137, 1987. [13] F. Gesekkscgaft. (2014, Apr.) Quadriga - quasi deterministic radio channel generator (v1.2.3-307). Fraunhofer Heinrich Hertz Institute (HHI). Berlin, Germany. [Online]. Available: http://hhi.fraunhofer.de/quadriga [14] 3GPP, “Physical channels and modulation,” 3rd Generation Partnership Project (3GPP), TS 36.211, Apr 2015. [15] K. K. E. Tommi Jamsa, Pekka Kyosti, “Initial channel models based on measurements,” METIS project, Deliverable D1.2, V1.0, ICT-317669, Apr. 2014. [16] M. Samimi and T. Rappaport, “Ultra-wideband statistical channel model for non line of sight millimeter-wave urban channels,” in Proc. IEEE Global Commun. Conference (GLOBECOM), Dec 2014, pp. 3483–3489. [17] A. Goldsmith, S. Jafar, N. Jindal, and S. Vishwanath, “Capacity limits of mimo channels,” IEEE J. Select. Areas Commun., vol. 21, no. 5, pp. 684–702, 2003. [18] A. Alkhateeb, O. El Ayach, G. Leus, and R. Heath, “Hybrid precoding for millimeter wave cellular systems with partial channel knowledge,” in Proc. Inform. Theory Applications Workshop (ITA), 2013.
|