帳號:guest(52.15.200.167)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):鄭巧雯
作者(外文):Cheng, Chiao Wen
論文名稱(中文):干擾對齊技術應用於多用戶多輸入多輸出正交分頻多工六十秭赫室內通訊系統之研究
論文名稱(外文):Interference Alignment for Multi-User MIMO-OFDM Systems over 60 GHz Indoor Channels
指導教授(中文):趙啟超
指導教授(外文):Chao, Chi chao
口試委員(中文):蘇育德
林茂昭
邱茂清
學位類別:碩士
校院名稱:國立清華大學
系所名稱:通訊工程研究所
學號:102064503
出版年(民國):104
畢業學年度:103
語文別:中文英文
論文頁數:63
中文關鍵詞:六十秭赫正交分頻多工干擾對齊多輸入多輸出
外文關鍵詞:60 GHzOrthogonal Frequency Division Multiplexing (OFDM)Interference Alignment (IA)Multiple-input-multiple-output (MIMO)
相關次數:
  • 推薦推薦:0
  • 點閱點閱:313
  • 評分評分:*****
  • 下載下載:14
  • 收藏收藏:0
由於對室內無線通訊高傳輸速率需求的提高,在六十秭赫附近廣大的無須執照頻寬受到了很多的關注。IEEE 802.15.3c工作團隊制定了中心頻率於六十秭赫的無線個人區域網路的通道模型和實體層的標準。在IEEE 802.15.3c通道模型下,我們所使用的是多輸入多輸出正交分頻多工 (Multiple-Input-Multiple-Output Orthogonal Frequency Division Multiplexing, MIMO-OFDM) 系統。我們考慮同時有多組的傳送端接收端在進行通訊的情況,他們在通訊過程中會干擾到彼此而影響到通訊品質。干擾對齊技術 (Interference Alignment, IA) 是近期一種有效降低干擾影響的方法。
在本論文中,我們將不同干擾對齊方法應用於多用戶多輸入多輸出正交分頻多工六十秭赫室內通訊系統,包含閉合形式干擾對齊 (Closed-form Interference Alignment, CIA)、最小投影誤差 (Minimum Projection Error, MPE) 演算法、疊代干擾對齊 (Iterative Interference Alignment, IIA) 演算法和最大訊號干擾雜訊比 (Maximum Signal-to-Interference-Plus-Noise Ratio, MSINR) 演算法。我們比較了不同干擾對齊方法的效能,並討論在IEEE 802.15.3c通道模型中直視性 (Line-of-Sight, LOS) 和非直視性 (Non-Line-of-Sight, NLOS) 通道模型的效能差異。閉合形式干擾對齊、最小投影誤差演算法、疊代干擾對齊演算法有相似的效能,而最大訊號干擾雜訊比演算法則和其他三個方法有較不相同的效能。相對於其他三個干擾對齊方法,在最大訊號干擾雜訊比演算法中,多加考慮了雜訊 (Noise) 的影響。因此在雜訊影響較大的情況時,最大訊號干擾雜訊比演算法會比其他演算法有更好的效能增益。另外對於最小投影誤差演算法、疊代干擾對齊演算法和最大訊號干擾雜訊比演算法,演算法的初始值會影響效能。因此我們也進一步在直視性和非直視性通道模型中,討論初始值對於演算法效能影響的差異。
Due to the increasing demand for high data-rate indoor wireless communications, the large amount of unlicensed bandwidth around 60 GHz has attracted much attention. The IEEE 802.15.3c Task Group established a channel model and developed a physical layer framework to support the wireless personal area networks operating at the 60 GHz band. In this thesis, the multiple-input-multiple-output orthogonal frequency division multiplexing (MIMO-OFDM) scheme is used over the IEEE 802.15.3c channel model. We consider the scenario in which multiple transmitter-receiver pairs communicate simultaneously such that the transmitter-receiver pairs interfere each other. Interference alignment (IA) is applied to mitigate the effects of the inter-user interference by aligning and suppressing the inter-user interference with the precoding matrices at the transmitters and the combining matrices at the receivers.
The performances of the closed-form IA (CIA), the minimum projection error (MPE) algorithm, the iterative interference alignment (IIA) algorithm, and the maximum signal-to-interference-plus-noise ratio (MSINR) algorithm are compared. The difference of the performance phenomena between IEEE 802.15.3c line-of-sight CM1.1 and non-line-of-sight CM2.1 channel models is investigated. In CM2.1, the MSINR algorithm has better performance than CIA, MPE, and IIA since the power of additive white Gaussian noise is considered in MSINR. In CM1.1, the MSINR algorithm outperforms other algorithms at low signal-to-noise ratios while the four IA algorithms have similar performance at medium to high signal-to-noise ratios. It is also found that different closed-form solutions may result in different performances. For iterative algorithms, initialization of the precoding matrices also affects the performance. Random initialization may result in the convergence to the local optimum, instead of the global optimum. In CM1.1, using the results of the iterative procedure in the previous channel realization as the initialization of the precoding matrices can improve the performance; yet, however, no improvement can be obtained by using this method in CM2.1.
1. Introduction
2. 60 GHz Indoor Channel and System Models
2.1 Overview of 60 GHz Indoor Channel Model
2.2 Multi-user MIMO-OFDM System Model
3. Interference Alignment Algorithm
3.1 Closed-form Interference Alignment
3.2 Minimum Projection Error Algorithm
3.3 Iterative Interference Alignment Algorithm
3.4 Maximum SINR algorithm
4. Simulation Results
4.1 Performance Comparison between the Interference Alignment Algorithms
4.2 Non-Uniqueness of Closed-Form Interference Alignment
4.3 Effect of Initialization on Interference Alignment Algorithms
5. Conclusions
[1] R. C. Daniels and R. W. Heath, ``60 GHz wireless communications: Emerging requirements and design recommendations," IEEE Veh. Technol. Mag., vol. 2, no. 3, pp. 41-50, Sep. 2007.
[2] N. Guo, R. C. Qiu, S. S. Mo, and K. Takahashi, ``60-GHz millimeter-wave radio: Principle, technology, and new results," EURASIP J. Wireless Commun. and Networking,
vol. 2007, pp. 1-8, 2007.
[3] http://www.ieee802.org/15/pub/TG3c.html.
[4] S.-K. Yong, et al., ``TG3c channel modeling sub-committee nal report," IEEE doc.:IEEE 802.15-07-0584-01-003c, Sep. 2010.
[5] S. A. Jafar and S. Shamai, ``Degrees of freedom region of the MIMO X channel," IEEE Trans. Inf. Theory, vol. 54, no. 1, pp. 151-170, Jan. 2008.
[6] V. R. Cadambe and S. A. Jafar, ``Interference alignment and degrees of freedom of the K-user interference channel," IEEE Trans. Inf. Theory, vol. 54, no. 8, pp. 3425-3441, Aug. 2008.
[7] V. R. Cadambe, S. A. Jafar, and S. Shamai, ``Interference alignment on the deterministic channel and application to fully connected gaussian interference networks," IEEE Trans. Inf. Theory, vol. 55, no. 1, pp. 269-274, Jan. 2009.
[8] V. R. Cadambe and S. A. Jafar, ``Interference alignment and the degrees of freedom of wireless X networks," IEEE Trans. Inf. Theory, vol. 55, no. 9, pp. 3893-3908, Sep. 2009.
[9] T. Gou and S. A. Jafar, ``Degrees of freedom of the K user M N MIMO interference channel," IEEE Trans. Inf. Theory, vol. 56, no. 12, pp. 6040-6057, Dec. 2010.
[10] C. M. Yetis, T. Gou, S. A. Jafar, and A. H. Kayran, ``On feasibility of interference alignment in MIMO interference networks," IEEE Trans. Signal Process., vol. 58, no. 9, pp. 4771-4782, Sep. 2010.
[11] K. Gomadam, V. R. Cadambe, and S. A. Jafar, ``A distributed numerical approach to interference alignment and applications to wireless interference networks," IEEE Trans. Inf. Theory, vol. 57, no. 6, pp. 3309-3322, Jun. 2011.
[12] S. W. Peters and R. W. Heath, ``Interference alignment via alternating minimization," in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process., Taipei, Taiwan, Apr. 2009, pp. 2445-2448.
[13] D. A. Schmidt, C. Shi, R. A. Berry, M. L. Honig, and W. Utschick, ``Minimum mean squared error interference alignment," in Proc. 43th Asilomar Conf. Signals, Syst. Comput., Paci c Grove, CA, 2009, pp. 1106-1110.
[14] K. Gomadam, V. R. Cadambe, and S. A. Jafar, ``Approaching the capacity of wireless networks through distributed interference alignment," in Proc. IEEE Global Commun. Conf., New Orleans, LA, Nov. 2008, pp. 1-6.
[15] S.-H. Park, H. Park, Y.-D. Kim, and I. Lee, ``Regularized interference alignment based on weighted sum-MSE criterion for MIMO interference channels," in Proc. IEEE Int. Conf. Commun., Cape Town, South Africa, May 2010, pp. 1-5.
[16] C. Le, E. Dimitrov, S. Moghaddamnia, and T. Kaiser, ``Performance investigation of MMSE-based interference alignment for multiuser MIMO UWB," in Proc. IEEE Int.
Conf. Ultra-Wideband, Bologna, Italy, Sep. 2011, pp. 170-174.
[17] J. Shin and J. Moon, ``Weighted sum rate maximizing transceiver design in MIMO interference channel," in Proc. IEEE Global Commun. Conf., Houston, TX, Dec. 2011,
pp. 1-5.
[18] S. W. Peters and R. W. Heath, ``Cooperative algorithms for MIMO interference channels," IEEE Trans. Veh. Technol., vol. 60, no. 1, pp. 206-218, Jan. 2011.
[19] Q. Li, X. Gu, and H. Li, ``MMSE interference alignment with imperfect CSI," in Proc. Second Int. Conf. Instrumentation, Measurement, Comput., Commun. Control, Harbin, China, Dec. 2012, pp. 197-201.
[20] J.-S. Kim, S.-H. Moon, S.-R. Lee, and I. Lee, ``A new channel quantization strategy for MIMO interference alignment with limited feedback," IEEE Trans. Wireless Commun., vol. 11, no. 1, pp. 358-366, Jan. 2012.
[21] O. E. Ayach and R. W. Heath, ``Interference alignment with analog channel state feedback," IEEE Trans. Wireless Commun., vol. 11, no. 2, pp. 626-636, Feb. 2012.
[22] S. Cho, H. Chae, K. Huang, D. Kim, V. K. N. Lau, and H. Seo, ``Efficient feedback design for interference alignment in MIMO interference channel," in Proc. IEEE Veh. Tech. Conf., Yokohama, Japan, May 2012, pp. 1-5.
[23] L. Zhang, L. Song, M. Ma, Z. Zhang, M. Lei, and B. Jiao, ``Interference alignment with differential feedback," IEEE Trans. Veh. Technol., vol. 61, no. 6, pp. 2878-2883, Jul. 2012.
[24] O. E. Ayach and R. W. Heath, ``Grassmannian differential limited feedback for interference alignment," IEEE Trans. Signal Process., vol. 60, no. 12, pp. 6481-6494, Dec. 2012.
[25] X. Rao, L. Ruan, and V. K. N. Lau, ``Limited feedback design for interference alignment on MIMO interference networks with heterogeneous path loss and spatial correlations," IEEE Trans. Signal Process., vol. 61, no. 10, pp. 2598-2607, May 2013.
[26] K. Anand, E. Gunawan, and Y. L. Guan, ``Beamformer design for the MIMO interference channels under limited channel feedback," IEEE Trans. Commun., vol. 61, no. 8,
pp. 3246-3258, Aug. 2013.
[27] R. T. Krishnamachari and M. K. Varanasi, ``Interference alignment under limited feedback for MIMO interference channels," IEEE Trans. Signal Process., vol. 61, no. 15, pp. 3908-3917, Aug. 2013.
[28] C. S. Vaze and M. K. Varanasi, ``The degrees-of-freedom region of the mimo interference channel with shannon feedback," IEEE Trans. Inf. Theory, vol. 59, no. 8, pp. 4798-4810, Aug. 2013.
[29] O. El Ayach, S. W. Peters, and R. W. Heath, ``The feasibility of interference alignment over measured MIMO-OFDM channels," IEEE Trans. Veh. Technol., vol. 59, no. 9, pp. 4309-4321, Nov. 2010.
[30] J. Zhao and D. Liu, ``An interference alignment scheme for 60 GHz millimeter-wave communication system," in Proc. IEEE Veh. Tech. Conf., Quebec City, Canada, Sep.
2012, pp. 1-5.
[31] S. Yoon, T. Jeon, and W. Lee, ``Hybrid beam-forming and beam-switching for OFDM based wireless personal area networks," IEEE J. Sel. Areas Commun., vol. 27, no. 8,
pp. 1425-1432, Oct. 2009.
[32] ``IEEE standard for information technology - Telecommunications and information exchange
between systems - Local and metropolitan area networks - Specific requirements. Part 15.3: Wireless medium access control (MAC) and physical layer (PHY) specification for high rate wireless personal area networks (WPANs) amendment 2: Millimeter-wave-based alternative physical layer extension," IEEE Std 802.15.3c-2009
(Amendment to IEEE Std 802.15.3-2003), pp. c1-187, Oct. 2009.












 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *