帳號:guest(18.116.40.188)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):蔡宜霈
作者(外文):Tsai, Yi Pei
論文名稱(中文):鰭式電晶體技術下電漿感應充電效應之偵測與記錄
論文名稱(外文):A Study of On-chip In-Situ Chamber Recorders for Plasma Induced Damage Effect in Advanced FinFET Technologies
指導教授(中文):林崇榮
指導教授(外文):Chrong Jung Lin
口試委員(中文):施教仁
金雅琴
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電子工程研究所
學號:102063702
出版年(民國):105
畢業學年度:104
語文別:中文
論文頁數:74
中文關鍵詞:電漿感應損害鰭式電晶體天線效應
外文關鍵詞:plasma induced damageFinFETAntenna Effect
相關次數:
  • 推薦推薦:0
  • 點閱點閱:531
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
近年來,隨著半導體製程技術不斷的進步,金氧半場效電晶體(MOSFET)元件尺寸不斷微縮。鰭式場效電晶體(FinField-effect transistor, FinFET)被視為在20nm製程下主要的解決方法。
然而在先進CMOS製程中,精確地控制3D結構是達成奈米微縮(nano-scale)中最重要的挑戰。閘極氧化層厚度隨著微縮製程越來越薄,氧化層與高介電材料/金屬閘可靠度也是微縮製程的重點之一。傳統的電漿感應電荷偵測器通常包含一個連接在天線上的電晶體閘極用於反應電荷效應。再利用不同的測量機制揭露天線閘極電晶體的潛在氧化損害程度,機制如掃描電壓(ramp voltage)或定電壓加壓測試(CVS)、定電流加壓測試(CCS)。崩潰電壓、電荷捕捉速率和加壓下的時間相依測量都可以用於揭露氧化損害程度。然而,這些測試可能會非常耗時,沒辦法提供製程監測與製程實時回饋。除此之外,在電漿感應電荷期間之極性與非均勻性都無法透過傳統測試方式明確定義。
因此在此篇論文,我們利用FinFET製程提出了一個新型的結構應用於監測與紀錄晶圓的電漿感應電荷。此晶圓上的電荷收集器擁有天線耦合浮動閘極,吸引基底之電荷進入浮動閘極,可以成功地記錄在後端(back-end-of-the-line, BEOL)製程上電漿電荷的程度。量測之截止電壓可以回推至浮動閘極電荷和電場,最後可預測出作用於電晶體閘極上真實的電壓分佈,對於未來的FinFET製程最佳化和可靠性評估有極大的幫助。
Recently, as semiconductor process technology continually advances, the scaling of Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET) has been continuing. Fin-shaped field effect transistors (FinFETs) are considered as the main solution for process beyond 20nm technology nodes.
However, precision control of 3D structures is one of the most important challenges to the success of advanced nano-scale CMOS technologies. Gate oxide thickness decreases for technology process scaling. The reliability of gate oxide and high-k material/metal gate is one of the most important thing of process scaling. Traditional PID (plasma induced damage) monitoring devices usually has a transistor gate connected to large antenna structures, which can reflect the charging effect. Many measuring schemes have been used to reveal the latent oxide damage level in antenna gate transistors, such as ramp breakdown test or constant voltage/current stress (CVS or CCS) measurement. Other measurements, such as breakdown voltage, charge trapping rate, and time-to-breakdown measured under stress can reveal latent oxide damage levels. However, traditional tests can be very time consuming, and cannot provide the real-time feedback for process monitoring. In addition, the polarity and non-uniformity of charging effect during PID cannot be defined by traditional measurements.
Therefore, in this research, we propose a novel structure for PID monitoring, which can reveal the wafer-level plasma-induced charging effect in advanced FinFET processes. The structure consists of antenna-coupled floating gates, which can abstract the charge tunneling from the substrate and successfully record the plasma charging levels during BEOL process. The measured threshold voltage distribution can estimate to floating gate charge and electrical field. Finally, the actual potential distribution on the transistor gates can be projected by the positive and negative charging effects on the floating gates, provides a powerful tool for future FinFET process optimization and reliability evaluations.
摘要…….. i
Abstract…. ii
致謝…….. iv
內文目錄.. v
附圖目錄.. vii
附表目錄.. x
第一章 序論 1
1.1 天線效應簡介 1
1.2 研究動機 3
1.3 論文大綱 4
第二章 天線效應偵測方法回顧與發展 8
2.1 電漿充電損害效應 8
2.2 傳統PID偵測之分析方法 9
2.2.1 時間相依介電質崩潰測試 (TDDB) 9
2.2.2掃描崩潰電壓測試 (Ramp Breakdown Voltage) 10
2.2.3電容-電壓測試 (C-V) 11
2.2.4閘極漏電流測試 (Gate Leakage Current) 12
2.2.5電壓-時間測試 (IETR) 12
2.2.6電子抹除式可複寫唯讀記憶體(EEPROM)偵測器 13
2.3 小結 14
第三章 天線效應記錄元件介紹與操作機制 24
3.1 元件結構與製程介紹 25
3.1.1 元件結構 25
3.1.2 製程介紹 26
3.2 載子注入機制回顧 27
3.2.1 穿隧效應 (Fowler-Nordheim, FN) 27
3.2.2 通道熱電子注入機制 (Chanel Hot Electron ,CHE) 28
3.3 元件操作機制及耦合結構設計 29
3.4 小結 30
第四章 天線效應記錄元件量測與分析 39
4.1 量測裝置及機台設定 39
4.2 基本特性量測與天線設計 39
4.3 不同金屬層之PID分布 42
4.4 天線與浮動閘極耦合程度之影響 43
4.5 正負電荷之分佈 44
4.6 資料儲存性 45
4.7 小結 45
第五章 總結 68
5.1 元件與現行偵測方法之比較 68
5.2 結語與未來展望 69
參考文獻 71
[1] Z. Wang, “Detection of and protection against plasma charging damage in modern IC technologies,” PhD Thesis, 2004, ISBN 90-365-2079-7.
[2] P. Simon, J.M. Luchies and W. Maly, “Identification of plasma-induced damage conditions in VLSI designs,” Semiconductor Manufacturing, IEEE Transactions on , vol.13, no.2, pp.136,144, May 2000.
[3] Z. Wang, J. Ackaert, A. Scarpa, C. Salm, F.G. Kuper and M. Vugts, “Strategies to cope with plasma charging damage in design and layout phases,” Integrated Circuit Design and Technology, 2005. ICICDT 2005, pp.91,98, 9-11 May 2005.
[4] F. F. Chen, “Plasma-Induced Oxide Damage: A Status Report,” Department of Electrical Engineering, UCLA, October 1996.
[5] C. Gabriel, “Charge buildup damage to gate oxide,” Microelectronic Processes, Sensors, and Controls, K. Elliott, 1. Hauser, D. Kwong, A. Ray, Eds., in Proc. SPIE, vol. 2091, pp. 239-247, 1994.
[6] W. H. Choi, P. Jain, C.H. Kim, “An array-based circuit for characterizing latent Plasma-Induced Damage,” Reliability Physics Symposium (IRPS), 2013 IEEE International, pp.4A.3.1,4A.3.4, 14-18, April 2013.
[7] H. C. Shin and C. Hu, “Thin gate oxide damage due to plasma processing,” Semicond. Sci. Technol. vol. 11, (1996). p463.
[8] McVittie, J.P., “Process charging in ULSI: mechanisms, impact and solutions,” Electron Devices Meeting, 1997. IEDM '97. Technical Digest., International, pp.433,436, 10-10, Dec. 1997.
[9] Z. Wang, P. Tanner, C. Salm, T. Mouthaan, F. Kuper, M. Andriesse and E. van der Drift, “Plasma-Induced Charging Damage of Gate Oxides” STW, Mierlo, pp. 593, 1999.
[10] H. Shin and C. Hu, “Plasma etching antenna effect on oxide- silicon interface reliability,” Solid-Stare Electron., vol. 36, no. 9, pp. 1356-1 358, 1993.
[11] J.B. Friedmann, J.L. Shohet, R. Mau, N. Hershkowitz, S. Bisgaard, S. Ma, McVittie and P. James, “Plasma-parameter dependence of thin-oxide damage from wafer charging during electron-cyclotron-resonance plasma processing,” Semiconductor Manufacturing, IEEE Transactions on, vol.10, no.1, pp.154,166, Feb 1997.
[12] H. Shin, K. Noguchi and C. Hu, “Modeling oxide thickness dependence of charging damage by plasma processing,” in IEEE Electron Device Letters, vol. 14, no. 11, pp. 509-511, Nov. 1993.
[13] K.P. Cheung, C.T. Liu, C.P. Chang, J.I. Colonell, W.Y.C. Lai, C.S. Pai, H.Vaidya, R. Liu, J.T. Clemens, E. Hasegawa, “Charging damage in thin gate-oxides-better or worse?,” Plasma Process-Induced Damage, 1998 3rd International Symposium on, pp.34,37, 4-5 June 1998.
[14] Bayoumi, A., Shawming Ma, Langley, B., Cox, M., Tavassoli, M., Diaz, C., Min Cao, Marcoux, P., Ray, G., Greene, W., “Scalability Of Plasma Damage With Gate Oxide Thickness,” Plasma Process-Induced Damage, 1997, vol., no., pp.11,14, 13-14 May 1997.
[15] P.J. Liao, et al., “Physical origins of plasma damage and its process/gate area effects on high-k metal gate technology,” in IRPS, pp. 14-18, April 2013.
[16] S. M. Kyung, Y. K. Chang, O. S. Yoo, J. P. Byoung, W. K. Sung, D. Y. Chadwin, D. Heh, G. Bersuker, B. H. Lee, and G. Y. Yeom, “Plasma induced damage of aggressively scaled gate dielectric (EOT≪1.0nm) in metal gate/high-k dielectric CMOSFETs,” in IRPS, pp.723-724, April 2008.
[17] A. Martin, “Review on the Reliability Characterisation of Plasma-Induced Damage,” J. Vac. Sci. Technol. B, 27(1), pp.426-434, 2009.
[18] K. Eriguchi and K. Ono, “Quantitative and comparative characterizations of plasma process-induced damage in advanced metal–oxide–semiconductor devices,” J. Phys. D, Appl. Phys., vol. 41, no. 2, p. 024 002, Jan. 2008.
[19] Eriguchi, K., Kamei, M., Takao, Y., Ono, K., “High-k MOSFET performance degradation by plasma process-induced charging damage—Impacts on device parameter variation,” Integrated Reliability Workshop Final Report (IRW), 2012 IEEE International, vol., no., pp.80,84, 14-18 Oct. 2012.
[20] C.D. Young, G. Bersuker, F. Zhu, K. Matthews, R. Choi, S.C. Song, H.K. Park, J.C. Lee and B.H. Lee, “Comparison of Plasma-Induced Damage in SIO2/TIN and HFO2/TIN Gate Stacks,” Reliability physics symposium, 2007. proceedings. 45th annual. ieee international, pp.67,70, 15-19, April 2007.
[21] Crook, D.; Domnitei, M.; Webb, M.; Bonini, J., "Evaluation of modern gate oxide technologies to process charging," Reliability Physics Symposium, 1993. 31st Annual Proceedings., International , vol., no., pp.255,261, 23-25 March 1993.
[22] Lai, W., Harmon, D., Hook, T., Ontalus, V., Gambino, J., “Ultra-thin Gate Dielectric Plasma Charging Damage in SOI Technology,” Reliability Physics Symposium Proceedings, 2006. 44th Annual., IEEE International, vol., no., pp.370,373, 26-30 March 2006.
[23] Hook, T.B., Harmon, D., Chuan Lin, “Detection of thin oxide (3.5 nm) dielectric degradation due to charging damage by rapid-ramp breakdown,” Reliability Physics Symposium, 2000. Proceedings. 38th Annual 2000 IEEE International, vol., no., pp.377,388, 2000.
[24] Ma, Shawming; Abdel-Ati, W.L.N.; McVittie, James P., "Sensitivity and limitations of plasma charging damage measurements using MOS capacitors structures," Electron Device Letters, IEEE , vol.18, no.9, pp.420,422, Sept. 1997
[25] J. Maserjian and N. Zamani, “Behavior of the Si/SiO2 interface observed by Fowler-Nordheim tunneling,”, J. Appl. Phys., vol. 53, p. 559, 1982.
[26] Cheung, K.P., “Advanced plasma and advanced gate dielectric - a charging damage prospective,” Reliability Physics Symposium Proceedings, 2006. 44th Annual., IEEE International, vol., no., pp.360,364, 26-30 March 2006.
[27] Cheung, K.P., Martin, S., Misra, D., Steiner, K., Colonell, J.I., Chang, C.P., Lai, W.Y.C., Liu, C.T., Liu, R., Pai, C.S., “Impact of plasma-charging damage polarity on MOSFET noise,” Electron Devices Meeting, 1997. IEDM '97. Technical Digest., International, vol., no., pp.437,440, 10-10 Dec. 1997.
[28] Cheung, K.P., “An efficient method for plasma-charging damage measurement,” Electron Device Letters, IEEE, vol.15, no.11, pp.460,462, Nov. 1994.
[29] Chrong-Jung Lin, Hsin-Ming Chen, “Wafer-Level Antenna Effect Detection Pattern For VLSI,” US Patent # US 6586765 B2, Jul.1, 2003.
[30] Dick James, “High-kmetal gates in leading edge silicon devices,” IEEE Advanced Semiconductor Manufacturing Conference (ASMC), May 2012, pp. 346-353.
[31] T. H. Ning, “Hot-electron emission from silicon into silicon dioxide,” Solid-State Electronics, vol. 21, 1978, pp. 273-282.
[32] Chenming Hu, “Lucky-electron model of channel hot electron emission,” IEEE International Electron Devices Meeting, Dec. 1979, pp. 22-25.
[33] Simon Tam, P.-K. Ko and Chenming Hu, “Lucky-electron model of channel hot-electron injection in MOSFET’s,” IEEE Transections on Electron Devices, vol. 31, no. 9, Sep 1984, pp. 1116-1125.
[34] Richard B. Fair and Robert C. Sun, “Threshold voltage instability in MOSFET's due to channel hot hole emission,” IEEE Transections on Electron Devices, vol. 28, no. 1, Jan 1981, pp. 83-94.
[35] Paolo Pavan, Roberto Bez, Piero Olivo and Enrico Zanoni, “Flash memory cells-an overview,” Proceedings of the IEEE, vol. 85, no. 8, Aug 1907, pp. 1248-1271.
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *