帳號:guest(52.14.151.45)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):蔡育揚
作者(外文):Tsai.Yuyang
論文名稱(中文):新型多晶矽/石墨烯二極體與MOSFET整合元件之研究
論文名稱(外文):A New Phototransistor: Integrating A Poly-silicon/Graphene Photodiode with An MOSFET
指導教授(中文):徐永珍
指導教授(外文):Hsu,Yung Jane
口試委員(中文):江雨龍
蔡哲正
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電子工程研究所
學號:102063567
出版年(民國):104
畢業學年度:103
語文別:中文
論文頁數:75
中文關鍵詞:石墨烯電晶體製程
外文關鍵詞:grapheneMOS process
相關次數:
  • 推薦推薦:0
  • 點閱點閱:287
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究是利用以石墨烯與不同材料接成的二極體接面形成的感光元件,藉由二極體對於不同光強度下產生出來的光電壓加在MOS的閘極端,改變閘極電壓,進而改變流過MOS通道的電流。
整個實驗步驟從CMOS製程做為基礎,逐步將MOSFET做出來,但在製作多晶矽閘極前將石墨烯轉移在晶圓上並加以圖案化,將多晶矽與石墨烯組成的接面感光元件加在閘極端上。
從量測結果中得到:由多晶矽與石墨烯組成的接面產生的光電壓對MOSFET的汲極電流有還不錯的影響,但一些製程上的缺失經過解決後,可對後續的應用有極大的幫助。
The current study fabricates heterostructure diodes made of graphene and other semiconductor materials. Used in a photodetector configuration, this kind of devices holds the potential of modulating the gate voltage of a MOS device to change the current flow through the transistor.
Experimentally, the device was fabricated following standard CMOS technology procedures. But before the polysilicon gate was fabricated, graphene was firstly transferred and patterned. Once the poly gate was completed, the photodetector heterostructure sat atop the gate.
Measurements show that the use of the poly Si-graphene photodiode can efficiently modulate the current of the MOSFET, but the integration of graphene into the standard CMOS process still requires some degree of refinement before it becomes a mainstream technology.
目錄
第一章 前言…………………………………………………..1
1.1研究背景與動機….………………………......…………………….……………1
1.2論文章節架構….………………………......……………………….……………2
第二章 實驗原理……………………………………………..3
2.1 金屬與半導體的接觸原理….……………….... .…………………….………...3
2.1.1蕭特基接觸………………………………………………………………….4
2.1.2 歐姆接觸……………………………………………………………...…….4
2.2 光二極體運作原理..………………….…………………………....……………5
2.2.1 光吸收原理…………….………..…………….............................................5
2.2.2 光二極體原理………………………………………………………………7
2.3 石墨烯基礎特性…….………………………......................................................9
2.3.1 石墨烯結構與特性…………………………………………………………9
2.3.2 石墨烯製備…………………………………………………………………10
2.4 石墨烯運用於光二極體..………….....................................................................11
2.5 實驗儀器與原理...……………………................................................................15
2.5.1 化學氣相沉積(CVD)……………………………………………………….15
2.5.2 離子佈植系統………………………………………………………………17
第三章 石墨烯與CMOS製程整合………………………...20
3.1 實驗設計流程.….……………………….............................................................20
3.2 元件設計與模擬.………………………..............................................................22
3.2.1 MOS模擬與特性分析…..…………….........................................................22
3.2.2 PMOS……….….………………………........................................................24
3.2.3光二極體…...….………………………........................................................25
3.3 電路設計與模擬分析…..…………….................................................................26
3.3.1電路模擬結果……………………………………………………………….28
3.4 製成步驟設計與光罩設計..………….................................................................29
3.5 CMOS實作過程…..……………..........................................................................38
第四章 量測結果與探討…………………………………….51
4.1 量測儀器介紹…...................................................................................................51
4.2 石墨烯品質量測...................................................................................................52
4.2.1 石墨烯拉曼光譜檢測....................................................................................52
4.2.2 石墨烯光吸收率量測....................................................................................54
4.2.3 Van Der Pauw石墨烯片電阻量測.................................................................57
4.3 元件量測…...........................................................................................................58
4.3.1石墨烯與矽接面….........................................................................................58
4.3.2石墨烯與多晶矽接面.....................................................................................61
4.3.3 石墨烯與多晶矽接面用於MOS閘極端.....................................................63
4.4 量測結果分析與討論...........................................................................................72
第五章 結論………………………………………………...73
參考文獻…...............................................................................74
參考文獻
[1] Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. A., ... & Firsov, A. A. , et al. "Electric field effect in atomically thin carbon films." science 306.5696 (2004)
[2] Hass, J., W. A. De Heer, and E. H. Conrad. "The growth and morphology of epitaxial multilayer graphene." Journal of Physics: Condensed Matter 20.32 (2008).
[3] Wilson, Mark. "Electrons in atomically thin carbon sheets behave like massless particles." Physics Today 59.1 (2006)
[4] Sze, Simon Min. Semiconductor devices: physics and technology. John Wiley & Sons, 2008.
[5] Li, X., Cai, W., An, J., Kim, S., Nah, J., Yang, D., ... & Ruoff, R. S. "Large-area synthesis of high-quality and uniform graphene films on copper foils." Science 324.5932 (2009)
[6] 林威成. "標準 SiGe BiCMOS 製程中光偵測器結構之研究." 清華大學電子工程研究所學位論文 (2011)
[7] An, X., Liu, F., Jung, Y. J., & Kar, S. "Tunable graphene–silicon heterojunctions for ultrasensitive photodetection." Nano letters 13.3 (2013): 909-916.
[8] Tongay, S., Lemaitre, M., Miao, X., Gila, B., Appleton, B. R., & Hebard, A. F. . "Rectification at graphene-semiconductor interfaces: zero-gap semiconductor-based diodes." Physical Review X 2.1 (2012)
[9] Das, Anindya, Biswanath Chakraborty, and A. K. Sood. "Raman spectroscopy of graphene on different substrates and influence of defects." Bulletin of Materials Science 31.3 (2008)
[10] Shen, Y., Zhou, P., Sun, Q. Q., Wan, L., Li, J., Chen, L. Y., ... & Wang, X. B.. "Optical investigation of reduced graphene oxide by spectroscopic ellipsometry and the band-gap tuning." Applied Physics Letters99.14 (2011)
[11] Streetman, Ben G., and Sanjay Banerjee. Solid state electronic devices. Vol. 4. New Jersey: Prentice Hall, 2000.
[12] Xiao, Hong. Introduction to semiconductor manufacturing technology. Upper Saddle River, NJ: Prentice Hall, 2001.
[13] Wallace, P. R. "The band structure of graphite." Phys. Rev 71.9 (1947)
[14]廖偉傑. "標準製程下應用於整合型光通訊接收器之光偵測器元件與訊號放大電路設計." 清華大學電子工程研究所學位論文 (2012)
[15]Wang, Mao-Chia. "超薄吸收層太陽能電池及利用摻雜改變混合太陽能電池的轉換效率." 清華大學電子工程研究所學位論文 (2012)
[16]Neamen, Donald A. Semiconductor physics and devices. McGraw-Hill Higher Education, 2003.
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *