帳號:guest(18.116.40.28)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):楊倉博
作者(外文):Yang,Tsang Po
論文名稱(中文):奈米粒子在奈米電漿光晶格中的近場和熱對流運輸行為
論文名稱(外文):Characterization of the near-field and convectional transport behavior of nanoparticles in nanoscale plasmonic opticla lattices
指導教授(中文):楊雅棠
指導教授(外文):Yang,Tang Ya
口試委員(中文):莊嘉揚
陳致真
口試委員(外文):Juang,Jia Yang
Chen,Chih Chen
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電子工程研究所
學號:102063564
出版年(民國):104
畢業學年度:104
語文別:中文
論文頁數:52
中文關鍵詞:二維週期性奈米結構電漿子光學晶格熱對流溫度分布計算
外文關鍵詞:two dimension periodic nanoscale structureplasmonic optical latticesconvectional flowtemperaure profile calculations
相關次數:
  • 推薦推薦:0
  • 點閱點閱:51
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
我們提出在二維簡單奈米電漿光學晶格中奈米小球的傳輸特性。其光學位勢是藉由非完全對焦的高斯光束照射在陣列的金屬圓柱來激發電漿共振。
這樣的光學位勢能提供奈米粒子在晶格中運輸有兩種原因,一種是因為近場的光學分力另一種則是因為光熱效應造成的熱對流運輸行為。而這熱對流運輸行為因雷射光對陣列的奈米電漿加熱導致有個非定域的溫度分布,並且也對此做了模擬。
為了瞭解奈米粒子傳輸的行為,我們觀察500nm小球在光子晶格內的傳輸行為;在光子晶格外則是觀察微米大小小球的傳輸行為,最後分析其軌跡並比較兩者軌跡和速度。實驗合併了因熱對流而能有效的長距離運輸和因近場產生能短距離運輸的電漿光學晶格。這實驗也開啟了我們新的研究方向,也對未來的研究有了很大幫助。
Abstract
We report the characterization of transport of nanosphere in two-dimensional simple square nanoscale plasmonic optical lattice.The optical potential is created by illumination an array of gold nanodisks with a loosely focused Gaussian beam to excite plasmonic resonance.
Such optical potential confers both in lattice particle transport due to near field optical gradient force and photothermallly induced convection transport behavior.The convection transport results from a delocalized temperatue profile from photothermally heating of the nanoplasmonic array.Simulation of the convection is also given.
In order to know the transport behavior ,we observe 500nm sepheres in the lattice and using micron size of sepheres which are out of lattice.Then,we analyze the trajectory and calculate the velocity to compare the sepheres which are in lattice and the sepheres which are out of the lattice.This work opens up new avenues for combination both the thermally assisted long range transport and the short range near field trapping of plasmonic optical lattice.
目錄
誌謝 i
中文摘要 ii
Abstract iii
目錄 iv
圖目錄 vi
表目錄 vii
一、緒論 1
1-1研究動機 2
1-2光學鑷子 3
1-3文獻回顧 5
二、實驗製程與儀器校正 13
2-1二維奈米電漿光子晶格製程 13
2-2光學鑷子系統校正 18
三、實驗模擬計算 22
3-1光吸收與散射的橫截面計算 22
四、實驗結果與討論 28
五、結論 37
附錄
附錄A、FDTD模擬結果 38
附錄B、二維週期性結構 39
B-1 粒子捕捉 39
附錄C、Matlab程式碼 40
C-1 有螢光粒子軌跡 41
C-2 無螢光粒子軌跡 43
C-3 圖片擷取與亮度計算 46
C-4 染料亮度分布與3D繪圖 47
參考文獻 48
參考文獻
1. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm and S. Chu,“Observation of a single-beam gradient force optical trap for dielectric particles,”Opt. Lett. 1986, 11, 11, 288-290.
2. D. Grier, “A revolution in optical manipulation,” Nature, 2003, 424, 810–816.
3. M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari, and R. Quidant, “Self-induced back-action optical trapping of dielectric nanoparticles,”Nature Photon., 2009,5, 915-919.
4. T. Shoji and Y. Tsuboi, J. Phys.“ Plasmonic Optical Tweezers toward Molecular
Manipulation:Tailoring Plasmonic Nanostructure, Light Source, and Resonant
Trapping,”Chem. Lett., 2014, 5,2957-2967.
5. J. S. Huang and Y. T. Yang, “Origin and Future of Plasmonic Optical
Tweezers ,”.Nanomaterials, 2015, 5, 1048-1065.
6. W. H. Wright, G. J. Sonek and M. W. Berns,“Radiation traping forces on microspheres with optical tweezers,”Appl. Rev. Lett., 1993, 63, 715-717.
7. G. Volpe, R. Quidant, G. Badenes, and D. Petrov, “Surface Plasma Radiation Forces,” Phys. Rev. Lett. 2006, 96, 238101.
8. M. Righini, A. S. Zelenina, C. Girard and R. Quidant,Parallel and selective trapping in a patterned plasmonic landscape. Nature Phys. 2007, 3 , 477-480.
9. M. Righini, G. Volpe, C. Girard, D. Petrov and R. Quidant,“Optical tweezers with enhanced efficiency based on laser-structured substrates,”Phys. Rev. Lett. 2008, 100, 183604.
10. T. Shoji, et al. J. Am. Chem. Soc.“Permanent Fixing or Reversible Trapping and
Release of DNA Micropatterns on a Gold Nanostructure Using Continuous-Wave or Femtosecond-Pulsed Near-Infrared Laser Light” 2013, 135, 6643-6648.45
11. Y. Pang and R. Gordon,“Optical Trapping of a Single Protein,”.Nano Lett. 2012,12, 402-406.
12. A. Kotnala and R. Gordon, Biomed.“Double nanohole optical tweezers visualize
protein p53 suppressing unzipping of single DNA-hairpins,”Opt. Express, 2014,5, 1886-1894.
13. A. A. Al Balushi and R. Gordon,“Label-Free Free-Solution Single-Molecule Protein−Small Molecule Interaction Observed by Double-Nanohole Plasmonic Trapping ,”ACS Photonics, 2014, 1, 389-393.
14. A. A. Al Balushi and R. Gordon,“Label-Free Free-Solution Single-Molecule Protein−Small Molecule Interaction Observed by Double-Nanohole Plasmonic Trapping,”Nano Lett., 2014, 14, 5787-5791.
15. S. Wheaton, R. M. Gelfand and R. Gordon, Nature Photonics, 9, 68, (2015).
16. P. T. Korda, M. B. Taylor, D. G. Grier,“Kinetically Locked-In Colloidal Transport in an Array of Optical Tweezers,”Phys. Rev. Lett., 2002, 89, 128301.
17. K. Ladavac, K.Kasza, and D.G.Grier,“Sorting Mesoscopic Objects with Peridoic Potential Landscape,”Phys. Rev. E., 2004, 70, 010901.
18. G. C. MacDonald, G. C. Spalding, K. Dholakia,“Microfluidic sorting in an optical lattice,Nature,”2003,426, 421-424.
19. A. Cuche, B. Stein, A. Canguier-Durand, E. Devaux, C. Genet and T. W. Ebbesen, “Brownian Motion in a Designer Force Field:Dynamical Effects of Negative Refraction on Nanoparticles,”Nano Lett., 2012, 12, 4329-4332.
20. K. Y. Chen, A. T. Lee, C. C. Hung, J. S. Huang and Y. T. Yang,“Transport and Trapping in Two-Dimensional Nanoscale Plasmonic Optical Lattice,”Nano Lett., 2013, 13, 4118-4122.
21. G. Baffou, R. Quidant and J. F. Garcia de Abajo.“Nanoscale Control of Optical Heating in Complex Plasmonic System”ACS ,Nano, 2010, 4, 709-716.
22. G. Baffou, R. Quidant and C. Girad,“Thermoplasmonics modelling:A Greens’s function approach,”Phys. Rev. B, 2010, 82, doi:10.1103.
23. J. S. Donner, G. Baffou, D. McCloskey and R. Quidant,,“Plasmon-Assisted Optofluidics,”ACS Nano, 2011, 5, 5457-5462.
24. G. Baffou, et al .,“Photoinduced Heating of Nanoparticle Arrays,”ACS Nano, 2013, 8, 6478-6488.
25. B. J. Roxworthy, A. M. Bhuiya, S. P. Vanka and K. C. Jr. Toussant,“Understanding and controlling plasmon-induced convection,”Nat. Commun., 2014, 5, doi:10.1038.
26. B. J. Roxworthy, K. D. Ko, A. Kumar, K. H. Fung, E. K. C. Chow, G. L. Liu, N. X. Fang, N.X., and K. C. Jr. Toussaint, Application of Plasmonic Bowtie Nanoantenna Arrays for Optical Trapping, Stacking, and Sorting Nano Lett., 2012, 12, 796-801.
27. J. C. Ndukaife, Avanish Mishra,Urcan Guler,Agbai George Agwu Nnanna,Steven T.
Wereley,and Alexandra Boltasseva,“Photothermal Heating Enabled by Plasmonic
Nanostructures for Electrokinetic Manipulation and Sorting of Particles,”ACS Nano,
2014, 8, 9035–9043.
28. Hohnholz, D.; Schweikart, K.-H.; Hanack, M.“A Simple Method for the Subdivision of ITO Glass Substrates,”Adv.Mater. 1999, 11, 646–649.
29. Reif, F., Fundamentals of Statistical and Thermal Physics 1st Ed., New York: McGraw-Hill, 1965.
30. Kestin, J.; Sokolv, M.; Wakeham, W. A.“Viscosity of liquid water in the range -8 ºC to 150 ºC,”J. Phys. Chem. Ref. Data 1978, 7, 941-948.
31.Ramires, M. L. V.; Nieto de Castro, C. A.; Nagasaka, Y.; Nagashima, A.; Assael, M. J.; Wakeham, W. A.“Standard Reference Data for the Thermal Conductivity of Water,”J. Phys. Chem. Ref. Data 1995, 24, 1377. ]
32.Chia-Chun Hung,“Characterization of transport behavior of nano particle in a simple nanoscale plasmonic optical lattice,”Master thesis,National Tsing Hua University thesis,2014.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *