帳號:guest(18.119.29.70)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):曾致堯
作者(外文):Tseng, Chih Yao
論文名稱(中文):高功率808nm雷射二極體封裝散熱能力改善之研究
論文名稱(外文):Study of Improving Cooling Capacity of High Power 808nm Laser Diode Package
指導教授(中文):吳孟奇
何充隆
指導教授(外文):Wu, Meng Chyi
Ho, Chong Long
口試委員(中文):謝光前
何文章
吳孟奇
何充隆
口試委員(外文):Hsieh, Kuang Chien
Ho, Wen Jeng
Wu, Meng Chyi
Ho, Chong Long
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電子工程研究所
學號:102063553
出版年(民國):104
畢業學年度:103
語文別:英文
論文頁數:68
中文關鍵詞:雷射二極體雷射封裝半導體接面溫度熱傳導
外文關鍵詞:Laser DiodeLaser PackagingJunction TemperatureHeat Conduction
相關次數:
  • 推薦推薦:0
  • 點閱點閱:287
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
主軸在探討高功率808nm雷射二極體封裝散熱的改良,主要目的為找尋有效地封裝方式降低雷射二極體廢熱產生的溫度,使用了一般高壓電變壓器常使用的油冷散熱方式,以及改進CS-mount封裝雷射的放置位置以增加散熱路徑達到更好的散熱效果,而雷射溫度的量測使用了雷射光譜因熱功率紅移的現象來做估算,以此來評估封裝散熱能力的改善於否,最後整合兩種封裝改良的能力進行完整的封裝並進行討論,以上皆是本文討論的重點。
雷射封裝設備使用了FINEPLACER® lambda-Flexible Sub-micron Die Bonder,此設備移動精確度為1微米來進行雷射鏡面及散熱座的對準,CS-mount使用高導熱率的銅,且為了吸收雷射及銅塊之間的應力使用軟性焊料銦,經過測試後最後封裝參數選用壓力2N、加熱至150℃並持溫180秒。
最後經過一系列實驗後確認油冷散熱可以有效地降低雷射二極體的溫度,且增強雷射經光纖耦合的光功率;而將雷射封裝在CS-mount中心的方式也能降低封裝後熱阻約1.32倍以達到有效的散熱。整合以上兩種方式後,雷射在QCW模式下能操作到14A光功率約12W,在CW模式下能操作到10A光功率約4.5W,而其量測計算出的熱阻值也和模擬的熱阻值相近。
In this study, the cooling capacity improvement of high-power 808nm laser diode package is the topic. Find effective ways to reduce the package laser diode temperature and waste heat using oil cooling solution that high-voltage transformer uses commonly, as well as improved CS-mount package in order to increase the thermal conduction path of laser diodes to achieve better cooling effect. And the temperature measurement of laser diodes used the red shift of laser optical spectrum, which is in order to assess the thermal capability of package is improvable. Finally, integrate two kinds of cooling solutions in a complete package and discuss all of the above.
After a series of experiments to confirm the oil cooling can effectively reduce the temperature of the laser diode and enhanced laser optical power after fiber-coupling. The center CS-mount also can reduce the thermal resistance of package about 1.32 times for achieving heat dissipation effectively. After the integration of the above two methods, the laser can be operated in QCW mode to 14A optical power about 12W, and operate in CW mode to 10A optical power about 4.5W, whereas the measured thermal resistance is also similar with the simulated thermal resistance.
Chapter 1 Introduction
Chapter 2 Fundamental Principles and Theoretical Analysis
2.1 Basic Theory of Laser
2.1.1 Physical Fundamentals of LASER
2.1.2 Semiconductor Laser
2.2 Laser Packaging
2.2.1 Laser Bonding Mismatch
2.2.2 Kinds of Laser Diode Packaging
2.3 Laser Diode Electro-optical Characteristics
2.3.1 L-I Curve Characteristic
2.3.2 Optical Spectrum Characteristic
2.3.3 The Methods of Laser Junction Temperature Measurement
2.3.4 Simulating Thermal Resistance in Laser Heat Sinks
Chapter3 Experimental Procedure
3.1 Measurement Instruments
3.1.1 High Power CW/QCW Laser Diode Driver LDX-36025-12
3.1.2 High Power Thermoelectric Temperature Controller LDT-5980
3.1.3 High Power CS Bar Diode Mounting Fixture LDM-4415
3.1.4 Agilent 86142B Optical Spectrum Analyzer
3.1.5 Flexible Sub-micron Die Bonder
3.2 Design Concept of CS-mount Packaging
3.3 Packaging Process
3.4 Laser Temperature Measurement
Chapter4 Results and Discussion
4.1 The Characteristic of Laser Diode before Bonding
4.1.1 Compare the Characteristic of Laser Diode Soaked in the Oil or in the Air.
4.1.2 Compare the Temperature of Laser Diode Soaked in the Oil or in the Air.
4.2 The Parameter of Laser Diode Bonding
4.3 The Cooling Improvement of Center CS-mount Packaging
4.4 The Complete Laser Diode Packaging
Chapter5 Conclusion
Reference
[1] W. Gao, Z. T. Xu, L. S. Cheng, K. J. Luo, A. Mastrovito and K. Shen, “High power high reliable single emitter laser diodes at 808 nm,” Proc. of SPIE, vol. 6456, 64560B, 2007.
[2] S. R. Karlsen, R. K. Price, M. Reynolds, A. Brown, R. Mehl, S. Patterson and R. J. Martinsen, “100-W, 105-μm,0.15NA fiber coupled laser diode module,” SPIE Photonics West, vol. 7198-29, 2009.
[3] Mitsuo Fukuda, Optical Semiconductor Devices, Wiley
[4] 盧廷昌, 王興宗,半導體雷射技術,五南圖書,
[5] 黃宏彥, 楊國輝,雷射原理與量測概論,五南圖書,
[6] Liu, X., Zhao, W., “Technology Trend and Challenges in High Power Semiconductor Laser Packaging”, State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an 710119, China, 2009.
[7] S. Lee, S. Song, V. Au and K.P. Moran, “Constriction/Spreading resistance model for electronic packaging,” Proc. of the 4th ASME/JSME Thermal Engineering Joint Conference, vol. 4, pp. 199-206, 1995.
[8] S. Song, S. Lee, and V. Au, Closed Form Equation for Thermal Constriction/Spreading Resistances with Variable Resistance Boundary Condition, Proceedings of the 1994 IEPS Conference, 1994, pp. 111-121.
[9] http://www.thindiamond.com/
[10] Dymalloy: A Composite Substrate for High Power Density Electronic Components, Lawrence Livermore National Laboratory, 1995.
[11] http://www.alsic.com/
[12] http://www.nbetech.com/
[13] http://www.nanomaterials-intl.com/
[14] Dr. Dnyaneshwar Shaligram Patil, Semiconductor Laser Diode Technology and Applications, InTech
[15] Newport Corporation, http://search.newport.com/?x2=sku&q2=LDX-36025-12
[16] Newport Corporation, http://search.newport.com/?x2=sku&q2=LDT-5980
[17] Newport Corporation, http://search.newport.com/?q=*&x2=sku&q2=LDM-4415
[18] X. Liu and W. Zhao, "Technology Trend and Challenges in High Power Semiconductor Laser Packaging", Electronic Components and Technology Conference, 2009
[19] J. Wang, L. Bao, M. DeVito, D. Xu, D. Wise, M. Grimshaw, W. Dong, S. Zhang, C. Bai, P. Leisher, D. Li, H. Zhou, S. Patterson, R. Martinsen and J. Haden, "Reliability and Performance of 808nm Single Emitter Multi-Mode Laser Diodes", Proc. of SPIE Vol. 7583, 2010
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *