|
[1] Wang, Yipeng, et al. "A 3-mW 25-Gb/s CMOS transimpedance amplifier with fully integrated low-dropout regulator for 100GbE systems." Radio Frequency Integrated Circuits Symposium, 2014. [2] Shekhar, Sudip, Jeffrey S. Walling, and David J. Allstot. "Bandwidth extension techniques for CMOS amplifiers," IEEE Journal of Solid-State Circuits, vol 41, no.11, pp. 2424-2439, Nov.2006. [3] Jin, Jun-De, and Shawn SH Hsu. "A 40-Gb/s transimpedance amplifier in 0.18-m CMOS technology," IEEE Journal of Solid-State Circuits, vol 43, no.6, pp. 1449-1457, June.2008. [4] Galal, Sherif, and Behzad Razavi. "10-Gb/s limiting amplifier and laser/modulator driver in 0.18-μm CMOS technology," IEEE Journal of Solid-State Circuits, vol .38, no.12, pp. 2138-2146, Dec. 2003. [5] Park, Sung Min, and Hoi-Jun Yoo. "1.25-Gb/s regulated cascode CMOS transimpedance amplifier for gigabit ethernet applications," IEEE Journal of Solid-State Circuits, vol. 39, no.1, pp. 112-121, Jan. 2004. [6] Lu, Tzon-Tzer, et al. "A 4.9-mW 4-Gb/s Single-to-Differential TIA with current-amplifying regulated cascode." VLSI Design, Automation, and Test (VLSI-DAT), 2012 International Symposium on. IEEE, 2012. [7] Razavi, Behzad. Design of integrated circuits for optical communications. John Wiley & Sons, 2012. [8] S.-H. Huang, W.-Z. Chen, Y.-W. Chang, and Y.-T. Huang, “A 10-Gb/s OEIC with meshed spatially-modulated photo detector in 0.18-μm CMOS technology,” IEEE J. Solid-State Circuits, vol. 46, no. 5, pp.1158-1169, May 2011. [9] W.-Z. Chen et al. “A 90-dB 10-Gb/s optical receiver analog front-end in a 0.18-um CMOS technology,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst, vol. 15, no. 3, pp. 358–365, Mar. 2007. [10] W.Z Chen, Y. L Chen and D.S Lin , “ A 1.8V 10-Gb/s Fully Integrated CMOS Optical Receiver Analog Front-End,” IEEE J. Solid-State Circuits, vol. 40, no. 6, pp. 1388-1396, Jun. 2005. [11] Wang, Chao-Yung, Chao-Shiun Wang, and Chorng-Kuang Wang. "An 18-mW two-stage CMOS transimpedance amplifier for 10 Gb/s optical application."Solid-State Circuits Conference, 2007. [12] C.-F. Liao and S.-I. Liu, “40 Gb/s transimpedance-AGC amplifier and CDR circuit for broadband data receivers in 90 nm CMOS,” IEEE J.Solid-State Circuits, vol. 43, no. 3, pp. 642–655, Mar. 2008. [13] S. Bashiri, et al, “A 40Gb/s Transimpedance Amplifier in 65nm CMOS Technology,” in Proc. IEEE Int. Symp. on Circuits and Systems, 2010, pp. 757 –760. [14] J. Kim and J. F. Buckwalter “A 40-Gb/s optical transceiver front-end in 45 nm SOI CMOS,” IEEE Journal of Solid-State Circuits, vol. 47, no. 3, pp. 1-4, March 2012. [15] J. Kim and J. F. Buckwalter, “Bandwidth enhancement with low groupdelay variation for a 40-Gb/s transimpedance amplifier,” IEEE Trans.Circuits Syst. I: Reg. Papers, vol. 57, no. 8, pp. 1964–1972, Aug. 2010. [16] Tang, Chih-Chun, Chia-Hsin Wu, and Shen-Iuan Liu. "Miniature 3-D inductors in standard CMOS process," IEEE Journal of Solid-State Circuits, vol 37, no.4, pp.471-480, Apr.2002. [17] C. Kromer, C. Sialm, C. Berger, T. Morf, M. L. Schmatz, F. Ellinger,D. Erni, G. L. Bona, and H. Jackel, “A 100mW 4x10 Gb/s transceiver in 80 nm CMOS for high-density optical interconnects,” IEEE J. Solid-State Circuits, vol. 40, no. 12, pp. 2667–2679, Dec. 2005. [18] H. Y. Huang, J. C. Chien, L. H. Lu, "A 10-Gb/s Inductorless CMOS Limiting Amplifier With Third-Order Interleaving Active Feedback," IEEE J. Solid-State Circuits, vol.42, no.5, pp.1111-1120, May 2007. [19] Hasan, SM Rezaul. "A novel CMOS low-voltage regulated cascode trans-impedance amplifier operating at 0.8 V supply voltage." Mechatronics and Machine Vision in Practice, 2008. M2VIP 2008. 15th International Conference on. IEEE, 2008. [20] Kim, Sang Gyun, et al. "A 50-Gb/s differential transimpedance amplifier in 65nm CMOS technology." Solid-State Circuits Conference (A-SSCC), 2014 IEEE Asian. IEEE, 2014. [21] M. Honarvar Nazari, A. Emami-Neyestanak, “Ultra Low-power Receiver Design for Dense Optical Interconnects” Invited to Optical Interconnect Conference, May 2012. [22] Chalvatzis, Theodoros, et al. "Low-voltage topologies for 40-Gb/s circuits in nanoscale CMOS," IEEE Journal of Solid-State Circuits, vol.42, no.7, pp.1564-1573, July.2007. [23] MOHAN, Sunderarajan S., et al.”Bandwidth extension in CMOS with optimized on-chip inductors,” IEEE J. Solid-State Circuits, vol. 35, no. 3, pp.346-355, Mar. 2000. [24] S. Galal and B. Razavi,”Broadband 40-Gb/s amplifier and ESD protection circuit in 0.18-um CMOS technology,” IEEE J. Solid-State Circuits, vol. 39, no. 12, pp.2389-2396, Dec. 2004. [25] Lee, Dongmyung, et al. "An 8.5-Gb/s fully integrated CMOS optoelectronic receiver using slope-detection adaptive equalizer," IEEE Journal of Solid-State Circuits, vol.45, no.12 ,pp.2861-2873, Dec,2010. [26] Lee, Dongmyung, et al. "An 8.5 Gb/s CMOS OEIC with on-chip photodiode for short-distance optical communications." IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2010. [27] Youn, Jin-Sung, et al. "10-Gb/s 850-nm CMOS OEIC receiver with a silicon avalanche photodetector," IEEE Journal of Quantum Electronics, vol.48,no.2, pp.229-236, Jan.2012. [28] Liao, Chih-Fan, and Shen-Iuan Liu. "A 40Gb/s transimpedance-AGC amplifier with 19dB DR in 90nm CMOS." 2007 IEEE International Solid-State Circuits Conference. Digest of Technical Papers (ISSCC), 2007. [29] Liao, Chih-Fan, and Shen-Iuan Liu. "A 40Gb/s CMOS serial-link receiver with adaptive equalization and CDR." IEEE International Solid-State Circuits Conference, 2008. ISSCC 2008. Digest of Technical Papers (ISSCC), 2008. [30] Amid, S. Bashiri, C. Plett, and P. Schvan. "Fully differential, 40 Gb/s regulated cascode transimpedance amplifier in 0.13 µm SiGe BiCMOS technology."Bipolar/BiCMOS Circuits and Technology Meeting (BCTM), IEEE, 2010. [31] Li, Cheng, and Samuel Palermo,” A low-power 26-GHz transformer based regulated cascode SiGe BiCMOS transimpedance amplifier,” IEEE J. Solid-State Circuits, vol. 48, no. 5, pp.1264-1275, May. 2013. [32] Analui, Behnam, and Ali Hajimiri,” Bandwidth enhancement for transimpedance amplifiers,” IEEE J. Solid-State Circuits, vol. 39, no. 8, pp.1263-1270, Aug. 2004. [33] Ahmed, Maruf Newaz. Transimpedance Amplifier (TIA) Design for 400 Gb/s Optical Fiber Communications. Diss. Virginia Polytechnic Institute and State University, 2013. [34] Taghavi, M. H., L. Belostotski, and J. W. Haslett. "A bandwidth enhancement technique for CMOS TIAs driven by large photodiodes." New Circuits and Systems Conference (NEWCAS), 2012 IEEE 10th International. IEEE, 2012. [35] Atef, Mohamed, and Horst Zimmermann. "Optical receiver using noise cancelling with an integrated photodiode in 40 nm CMOS technology." Circuits and Systems I: Regular Papers, IEEE Transactions on, 2013, pp. 1929-1936. [36] Chou, Shun-Tien, et al. "A 40 Gbps optical receiver analog front-end in 65 nm CMOS." Circuits and Systems (ISCAS), 2012 IEEE International Symposium on. IEEE, 2012. [37] Ahmed, Muhammad Najebul, Johanna Chong, and Dong Sam Ha. "A 100 Gb/s transimpedance amplifier in 65 nm CMOS technology for optical communications." Circuits and Systems (ISCAS), IEEE, 2014. [38] Szilagyi, Laszlo, Ronny Henker, and Frank Ellinger. "An inductor-less ultra-compact transimpedance amplifier for 30 Gbps in 28 nm CMOS with high energy-efficiency," International Midwest Symposium on Circuits and Systems (MWSCAS), IEEE, 2014. [39] 黃世豪, “相容於標準金氧半技術之光接收前端電路,”國立交通大學電子工程研究所碩士論文,2008。 [40] 周順天, “CMOS光通訊接收機設計,”國立交通大學電子工程研究所碩士論文,2010。 [41] 卓偉漢, “應用於無線通訊系統與光通訊系統接受器之前端放大器,”國立清華大學電子工程研究所碩士論文,2010。 [42] 陳聖文, “應用於光連結系統之高速前端電路與光電介面交換機設計,”國立清華大學電子工程研究所碩士論文,2012。 [43] 邱柏崴, “光連結系統之高速收發機電路與交換機設計及量測,”國立清華大學電子工程研究所碩士論文,2013。 [44] 劉彥廷, “超高速光通訊前端電路設計,”國立清華大學電子工程研究所碩士論文,2014。
|