帳號:guest(3.128.201.232)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):沈允軍
作者(外文):Shen, Yun Chun
論文名稱(中文):Ku/Ka頻段衛星接收器前端電路與C頻段寬頻功率放大器之設計
論文名稱(外文):Design of Ku/Ka band Receiver Front-ends and a C-band Wideband Power Amplifier
指導教授(中文):徐碩鴻
指導教授(外文):Hsu, Shuo Hung
口試委員(中文):孟慶宗
邱煥愷
口試委員(外文):Chiou, Hwann Kaeo
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電子工程研究所
學號:102063550
出版年(民國):104
畢業學年度:103
語文別:英文
論文頁數:79
中文關鍵詞:低雜訊放大器降頻器中頻放大器射頻接收機功率放大器
外文關鍵詞:LNAMIXERIFARXPA
相關次數:
  • 推薦推薦:0
  • 點閱點閱:380
  • 評分評分:*****
  • 下載下載:2
  • 收藏收藏:0
此論文中,完成了兩個實作在0.18-um BiCMOS製程之接收機,分別應用於Ku頻段(10.7~13.45GHz)與Ka頻段(18.2~22.2GHz)。主要探討應用於低雜訊降頻器(Low noise block)系統之寬頻低雜訊接收機的電路設計、模擬與量測,其中電路架構包含了三個部分,分別是低雜訊放大器(LNA)、混頻器(Mixer)與中頻放大器(IFA)。
於Ku頻段應用中,LNA在輸入端使用變壓器回授匹配網路的方式,同時達成寬頻阻抗匹配與低雜訊的特性。混頻器部分使用改良式吉爾博式架構(Gilbert Mixer),在輸入端使用被動式平衡器(passive balun)單端轉雙端,以達到低雜訊與低功耗設計。之後接了一個雙端轉單端的主動式鏡像電路,並使用電容退化技術來提升頻寬。中頻放大器(IFA)使用gm3 補償技術與3D電感技術來增加頻寬與線性度。
於Ka頻段應用中,中頻部分電路與Ku頻段的設計相同。不同處在於此LNA改良Ku頻段的設計,在第一級負載端與第二級源極端使用變壓器回授以提升頻寬與雜訊匹配。混頻器部分使用電路注入式架構提升增益與降低雜訊。兩顆射頻前端電路的增益有45dB以上、雜訊在7dB以下和線性度OP1dB也約有+4dB,皆符合計畫需求。
此論文也完成了一個90-nm CMOS製程之功率放大器,應用於C頻段(4~8GHz)中,使用兩級cascode的架構提供高增益,此電路包含了一級推動級、一級功率級以及三個被動式變壓器式的匹配網路,將負載阻抗匹配置最佳阻抗點。達成4~8GHz的寬頻、增益大於30dB、輸出功率OP1dB為14dBm和功率增進效率(PAE)為20%的設計。
This thesis presents two RF front-end receivers in 0.18 um BiCMOS for Ku-band (10.7~13.45GHz) and Ka-band (18.2~22.2GHz) applications, respectively. This thesis discusses the wideband low-noise receiver for low-noise block design regarding the circuit designs, simulations and measurements. The circuit topologies include three parts about low-noise amplifier (LNA), down conversion mixer and intermediate frequency amplifier respectively (IFA).
For Ku-band applications, the input matching network of LNA is designed by transformer to achieve wideband matching and low noise operation simultaneously. The mixer of frond-end receiver used the improved Gilbert-based mixer with a passive balun to accomplish single-ended to differential conversion between the transconductance stage and switch stage. It achieves low noise and low power consumption. Next stage uses the active current mirror circuit to convert differential to single-ended and also uses capacitor degeneration technique to enhance the overall bandwidth. Last stage, IFA, uses gm3 compensation technique and 3D inductor to increase the bandwidth and linearity.
For Ka-band application, the design of intermediate frequency part is similar with our previous work at Ku-band. For LNA circuit, the gate-to-source transformer feedback matching network with external capacitor CEXT is used to achieve the wideband power matching and reduce the noise figure. The mixer of receiver front-end uses the Gm-boosted current bleeding structure to improve gain and noise performance. Both RF front-ended receivers achieve conversion gain of 45dB, the noise figure is smaller than 7dB and the linearity OP1dB is above 4dBm.
In addition, this thesis also presents a wideband transformer-based power amplifier in 90-nm CMOS process for C-band (4~8GHz) applications. By utilizing a two-stage cascade structure, the high gain performance can be obtained. The circuit schematic consists of a driver stage, a power stage, and three matching network by transformer at the input, interstage, and output for matching the maximum power matching impedances of the power and driver stage. The PA achieves a 3-dB bandwidth in a range of 4~8GHz, gain about 30dB, OP1-dB of 14dBm and power-added-efficiency of 20%.
致謝 ii
摘要 iii
Abstract iv
Contents vi
List of Figures viii
List of Table xiii
Chapter 1 Introduction 1
1.1 Motivation for Satellite Receiver 1
1.2 Motivation for Power Amplifier 3
1.3 Thesis Organization 5
Chapter 2 Fundamentals for Receiver and Power Amplifier 6
2.1 Basics of Low Noise Amplifier Design 7
2.2 Basics of Mixer Design 12
2.3 Basics of Power Amplifier Design 20
2.4 Summary 27
Chapter 3 High-Gain Receiver Front-end for Ku-band Satellite TV Applications 28
3.1 LNA using TF Feedback Technique 28
3.2 TF-Based Down Conversion Mixer 34
3.3 Buffer with Degeneration Capacitor 37
3.4 IFA with gm3 Compensation and 3D Inductor 39
3.5 Circuit Schematic and Measured Results 44
3.6 Summary and conclusion 48
Chapter 4 High-Gain Receiver Front-end for Ka-band Satellite TV Applications 49
4.1 Dual-Transformer-Feedback LNA 50
4.2 Invertor-Typed Current Bleeding Mixer 52
4.3 Circuit Schematic and Measured Results 55
4.4 Summary and Conclusion 59
Chapter 5 A High Efficiency Wideband Power Amplifier in 90nm CMOS 60
5.1 Design of a Power Transistor Cell 60
5.2 Design of the Transformer 62
5.3 Design of TF Matching Network 65
5.4 Circuit Schematic & Measured results 68
5.5 Summary and Conclusion 74
Chapter 6 Conclusion and Future Work 75
[1] A. Fantinato, N. Conci, T. Rossi, and C. Sacchi, “Performance analysis of W-band satellite HDTV broadcasting,” in IEEE Aerospace Conference, pp. 1-12, Mar. 2011.
[2] A. Bevilacqua and A. M. Niknejad, “An ultrawideband CMOS low-noise amplifier for 3.1–10.6-GHz wireless receivers,” IEEE J. Solid-State Circuits, vol. 39, no. 12, pp. 2259–2268, Dec. 2004.
[3] Guillermo Gonzalez, Microwave Transistor Amplifier Analysis and Design, 2nd Edition, Prentice Hall, 1996.
[4] W. Cho and S. Hsu, “An ultra-low-power 24 GHz low-noise amplifier using 0.13 μm CMOS technology,” IEEE Microw. Wireless Compon. Lett., vol. 20, pp. 681-683, Dec. 2010.
[5] Behzad Razavi, RF Microelectronics, 2nd Edition, Pearson, 2011.
[6] J. C. Pedro and N. B. Carvalho, Intermodulation Distortion in Microwave and Wireless Circuit. Norwood, MA: Artech House, 2003.
[7] A. Behzad, “Wireless LAN radios system definition to transistor design,” IEEE Press Series on Microelectronic Systems, Dec. 2007.
[8] S.C. Cripps, RF Power Amplifier for Wireless Communications. Boston, MA: Artech House, 1999.
[9] G. Gonzalex, Microwave Transistor Amplifiers Analysis and Design. Upper Saddle River, NJ: Prentice Hall, 1997.
[10] M. Reiha and J. Long, “A 1.2 V reactive-feedback 3.1-10.6 GHz low-noise amplifier in 0.13 μm CMOS” IEEE J. Solid-State Circuits, vol. 42, no. 5, pp. 1023-33, May 2007.
[11] I. Aoki, S.D. Kee, D.B. Rutledge, and A. Hajimiri, “Distributed active transformer-a new power-combining and impedance-transformation technique,” IEEE Trans. Microw. Theory Tech., vol. 50, no. 1, pp. 316–331, Jan. 2002.
[12] K.W. Kobayashi, R. Esfandiari, M.E. Hafizi, D. C. Streit, A.K. Oki, L.T. Tran, D.K. Umemoto and M.E. Kim, “GaAs HBT wideband matrix distributed and darlington feedback amplifiers to 24 GHz,” IEEE Trans. Microwave Theory Tech., vol. 39, no. 12, pp. 2001–2009, Dec. 1991.
[13] A. Zolfaghari, A. Chan, and B. Razavi, “Stacked inductors and transformers in CMOS technology, ” IEEE J. Solid-State Circuits, vol. 36, pp. 620-628, Apr. 2001.
[14] C.-C. Tang, C.-H. Wu, and S.-I. Liu, “Miniature 3-D inductors in standard CMOS process, ” IEEE J. Solid-State Circuits, vol. 37, pp. 471-480, Apr. 2002.
[15] V. Aparin and L.E. Larson, “Modified derivative superposition method for linearizing FET low-noise amplifiers,” IEEE Trans. Microwave Theory Tech., vol. 53, no. 2, pp. 571–581, Feb. 2005.
[16] G. Girlando, S. A. Smerzi, and T. Copani, and G. Palmisano, “A monolithic 12-GHz heterodyne receiver for DVB-S application in silicon bipolar technology,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 3, pp. 952-959, Mar. 2005.
[17] P. Philippe, L. Praamsma, and R. Breunisse et al., “A low power 9.75/10.6 GHz down-converter IC in SiGe:C BiCMOS for Ku-Band satellite LNBs,” in Proc. BCTM 2011, pp. 211–214.
[18] D. Ma, F. F. Dai, R. C. Jaeger, and J. D. Irwin “An X-and Ku-band wideband recursive receiver MMIC with gain-reuse,” IEEE J. Solid-State Circuits, vol. 46, pp. 562-571, Mar. 2011.
[19] M. El-Nozahi et al., “A millimeter-wave (24/31-GHz) dual-band switchable harmonic receiver in 0.18-m SiGe process,” IEEE Trans. Microw. Theory Techn., vol. 58, no. 11, pp. 2717–2729, Nov. 2010.
[20] Gerben W. de Jong et al., “A fully integrated Ka-band VSAT down-converter,”IEEE J. Solid-State Circuits, vol. 48, no.7, pp. 1651-1658, Jul. 2013.
[21] C. -H. Li et al., “A 1.2-V 5.2-mW 20-30 GHz wideband receiver front-end in 0.18-m CMOS,” IEEE Trans. Microw. Theory Techn., vol. 60, no. 11, pp. 3502-3511, Nov. 2012.
[22] Y. -S. Lin et al., “Design and analysis of a 21-29 GHz ultra-wideband receiver front-end in 0.18-m CMOS technology,” IEEE Trans. Microw. Theory Tech., vol. 60, no. 8, pp. 2590–2604, Aug. 2012.
[23] J. Kim, W. Kim, H. Jeon, Y. Y. Huang, Y. Yoon, H. Kim, C. H. Lee, K. T. Kornegay, “ A fully-integrated high-power linear CMOS power amplifier with a parallel-series combining transformer,” IEEE J. Solid-State Circuits, vol. 47 no. 3, March. 2012.
[24] B. H. Ku, S. H. Baek, S. Hong, “A wideband transformer-coupled CMOS power amplifier for X-band multifunction chips,” IEEE Trans. Microw. Theory Tech., vol.59, no. 6 , June. 2011.
[25] T. K. Nguyen, C. H. Kim, G. J. Ihm, M. S. Yang, and S. G. Lee, “CMOS low-noise amplifier design optimization techniques,” IEEE Trans. Microw. Theory Techn., vol. 52, no. 5, pp. 1433-1442, May. 2004.
[26] H. Wang, C. Sideris, and A. Hajimiri, “A 5.2-to-13 GHz class-AB CMOS power amplifier with a 25.2 dBm peak output power at 21.6% PAE,” in IEEE Int. Solid-State Circuits Conf. Tech. Dig., Feb. 2010.
[27] C. Lu, A.-V. H. Pham, M. Shaw, and C. Saint, “Linearization of CMOS broadband power amplifiers through combined multigated transistors and capacitance compensation,” IEEE Trans. Microw. Theory Techn., vol. 55, no. 10, pp. 2053–2058, Oct. 2007.
(此全文限內部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *