帳號:guest(18.188.197.197)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):潘信瑋
作者(外文):Pan, Hsin Wei
論文名稱(中文):應用於鰭式場效電晶體邏輯製程之新型電阻式隨機選取記憶體
論文名稱(外文):A Novel Resistive Random Access Memory in FinFET CMOS Logic Technology
指導教授(中文):林崇榮
指導教授(外文):Lin, Chrong Jung
口試委員(中文):翁烔城
金雅琴
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電子工程研究所
學號:102063545
出版年(民國):104
畢業學年度:103
語文別:中文英文
論文頁數:54
中文關鍵詞:鰭式電晶體記憶體電阻式記憶體
外文關鍵詞:FinFETMemoryRRAM
相關次數:
  • 推薦推薦:0
  • 點閱點閱:523
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
近年來,因消費性電子產品的日新月異,對大容量以及快速存取的記憶體需求大增。快閃記憶體主宰非揮發性記憶體市場,但是快閃記憶體隨著製程的微縮,將面臨到許多困難,例如電荷儲存不易、極高操作電壓以及微縮的物理極限等,這加速了新型非揮發性記憶體之研究,其中又以電阻式記憶體最為看好,可望成為下一世代非揮發性記憶體的主流。
本論文提出一種新型的鰭式場效電晶體介電層電阻式隨機存取記憶體(FINFET Dielectric Resistive Random Access Memory, FIND RRAM),相容於先進鰭式場效電晶體邏輯製程,此種新電阻式記憶體不用增加額外光罩或特殊製程步驟,並且佈局面積只有0.07632μm2,具有相當高競爭力。藉由電性分析,此電阻式記憶體操作電壓低和快速轉態的特性,並且在可靠度方面設置/重置干擾測試、連續讀取測試及150oC烘烤測試顯示出優秀的特性。
此外,我們成功實現了高密度的1kb NOR型陣列,此電阻式記憶體不需多餘光罩,具有操作快速、超小元件面積、優異的可靠度及製程微縮性等優勢,可望在未來成為相當有競爭力的內嵌式非揮發性記憶體。
Recently ,due to the rapidly developing of commercial electronics, the demands of fast and mass storage devices increase. Flash memory dominates the market of nonvolatile memory. However with the technology scaling down, flash memory come up with many challenge, such as inadequate charge storage, high operation voltage and physical limit, which urges the study of novel nonvolatile memory. In which, RRAM is the most promising candidate for the next generation.
In this studies, we propose a novel FINFET Dielectric (FIND) RRAM, which is fully compatible with FinFET CMOS logic process without extra mask or additional process flow. The cell size of the FIND RRAM is only 0.07632μm2, which is highly competitive. The electrical analysis shows low operation voltage and short switching time. Moreover, excellent set/reset disturb immunity and data retention at 150oC for 1000 hours further prove its superior reliability.
In this dissertation, a highly dense 1kb NOR-type FIND RRAM array is successfully demonstrated.. Without the requirement of extra masks, this cell featuring fast operation speed, extremely small and outstanding reliability and scalability is one of the promising solutions for nonvolatile memory in the near future. 
內文目錄
摘要 i
Abstract ii
致謝 iii
內文目錄 xi
附圖目錄 xiii
附表目錄 xv
第一章 序論 1
1.1 前言 1
1.2 論文大綱 2
第二章 電阻式記憶體文獻回顧 3
2.1 電阻式記憶體介紹 3
2.1.1電阻式記憶體技術回顧 3
2.1.2初始化 4
2.1.3操作特性 5
2.1.4電阻式記憶體模型 5
2.2 電阻式記憶體陣列 6
2.2.1交叉點陣列與連通管原理 6
2.2.2二極體驅動交叉點陣列 7
2.2.3金氧半電晶體驅動陣列 8
第三章 FinFET電阻式隨機存取記憶體 20
3.1 元件結構 20
3.2 量測環境介紹 21
3.3 元件特性及操作最佳化 22
3.4 小結 23
第四章 電阻式隨機存取記憶體之記憶體陣列 38
4.1 陣列結構的比較 38
4.2 陣列量測結果及操作分析 39
4.3 陣列可靠度量測與分析 39
4.3.1 資料儲存性分析 39
4.3.2 讀取干擾分析 40
4.3.3 設置/重置干擾分析 40
4.4 小結 41
第五章 總結 49
參考文獻 50





附圖目錄
圖2.1 電阻式記憶體元件結構。 9
圖2.2 CuO崩潰後,電阻轉換現象發生在CuxO混合層中。 10
圖2.3 電阻式記憶體操作極性 11
圖2.4 導通絲路因大電流通過產生的高溫溶解 12
圖2.5 重置操作電流-電壓曲線。 13
圖2.8 二極體驅動電阻式記憶體之示意圖。 16
圖2.9 高密度交叉點陣列 17
圖2.10 由Ni/TiO2/Ni的結構所組成的雙向選擇器。 18
圖3.1 FinFET HKMG RRAM的3D結構圖 24
圖3.2 FIND RRAM元件之(a)佈局圖。(b) NOR型陣列意圖。 25
圖3.3 FIND RRAM之TEM圖。 26
圖3.4 鰭式場效電晶體結構造成轉角效應 27
圖3.5 量測系統示意圖 28
圖3.6 典型的單極性RRAM電阻轉換特性。 29
圖3.7 在不同SL電壓設置下,讀取電流對時間關係圖 30
圖3.8 在不同SL電壓重置下,讀取電流對時間關係圖 31
圖3.9 在脈衝操作下電阻態的週期轉換。 32
圖3.10 WL電壓對LRS讀取電流的關係 33
圖3.11 通道電阻對HRS讀取電流的關係 34
圖3.12 順向與反向讀取示意圖 35
圖3.13 三種電阻態下順向與反向讀取電流 36
圖3.14 讀取視窗最佳化 37
圖4.1 (a)NAND 型陣列示意圖 (b)NOR 型陣列示意圖。 42
圖4.2 1kb FIND RRAM 陣列LRS和HRS的電流分佈。 43
圖4.3 1kb FIND RRAM 陣列設置與重置操作電壓分佈。 44
圖4.4 150OC烘烤1000小時顯示不會影響元件特性。 45
圖4.5 連績讀取測試。 46
圖4.6 (a)設置干擾測試(b)重置干擾測試。 47






附表目錄
表4.1 FIND RRAM操作電壓。 48







[1] J.C. Slonczewski, “Current-driven excitation of magnetic multilayers”, in Journal of Magnetism and Magnetic Materials, vol.159, pp.L1-L7, Jun. 1996.
[2] C.J. Lin, S.H. Kang, Y.J. Wang, K. Lee, X. Zhu, W.C. Chen, X. Li, W.N. Hsu,Y.C. Kao, M.T. Liu, W.C. Chen, Y.Lin, M. Nowak, N. Yu and L. Tran, ” 45nm Low Power CMOS Logic Compatible Embedded STT MRAM Utilizing a Reverse-Connection 1T/1MTJ Cell”, in IEDM, Baltimore, pp.1-4, Dec. 2009.
[3] R.A. Bheda, , J.A. Poovey, J.G. Beu, and T.M. Conte, “Energy Efficient Phase Change Memory Based Main Memory for Future High Performance Systems” , in IGCC, Washington, pp.1-8, 2011.
[4] R. E. Simpson, P. Fons, A. V. Kolobov, T. Fukaya, M. Krbal, T. Yagi and J. Tominaga, “Interfacial phase-change memory”, in Nature nanotechnology, pp.501-505, Jul 2011.
[5] C.Y. Lin, D.-Y. Lee, C.C. Lina, and T.Y. Tseng ,“Effect of thermal treatment on resistive switching characteristics in Pt/Ti/Al2O3/Pt devices”,in Surface Coatings Technol.,vol. 203, pp. 628–631, Dec .2008.
[6] I.S. Park, K.R. Kim, S. Lee and J. Ahn,”Resistance switching characteristics fornonvolatile memory operation of binarymetal oxides”, in Jpn. J. Appl. Phys., vol. 46,pp. 2172–2174, Apr. 2007.
[7] D. S. Jeong , z. Schroeder, and R. Waser,”Coexistence of bipolar and unipolar resistiveswitching behaviors in a Pt/TiO2/Ptstack”, in Electrochem Solid-State Lett., vol. 10,pp. G51–G53, 2007
[8] K.P. Chang,W.C. Chien,Y.C. Chen,E.K. Lai, S.C.g Tsai,S.H. Hsieh,Y.D.Yao,J. Gong;K.Y. Hsieh,R. Liu and C.Y. Lu, “Low-voltage and fast-speed forming processof tungsten oxide resistive memory,” in Extended Abstracts Int. Conf. Solid State Devices Mater., Tsukuba ,pp. 1168–1169, Sep .2008,.
[9] H.Y., Lee, P.S., Chen, T.Y. Wu , Y.S. Chen,C. Wang, , P.J. Tzeng , C.H.,Lin , F. Chen , ,C.H. Lien and M.J. Tsai” Low power and high speed bipolar switching with a thin reactive Ti buffer layer in robust HfO2 based RRAM”, in IEDM, San Francisco, Dec. 2008
[10] Chen, Y.S.;Lee, H.Y. , Chen, P.S. , Gu, P.Y. , Chen, C.W. , Lin, W.P. , Liu, W.H. ,Hsu, Y.Y. , Sheu, S.S. , Chiang, P.-C. , Chen, W.S. ,Chen, F.T. ,Lien, C.H.and Tsai, M.J. ” Higly scalable hafnium oxide memory with improvements of resistive distribution and read disturb immunity” in IEDM, Baltimore pp.105-108, Dec. 2009
[11] Y. Watanabe, J. G. Bednorz, A. Bietsch, Ch. Gerber, D. Widmer, A. Beck, and S. J. Wind, “Current-driven insulator-conductor transition and nonvolatile memory in chromium-doped SrTiO3 single crystals”, in Appl. Phys. Lett., vol.78, pp.3738–3740, 2001.
[12] A. Beck, J. G. Bednorz, C. Gerber, C. Rossel, and D. Widmer, “Reproducible switching effect in thin oxide films for memory applications”, in Appl. Phys. Lett., vol.77, pp.139–141, 2000.
[13] Kozicki M.N.,Balakrishnan M., Gopalan C. ,Ratnakumar C. ,Mitkova M.,” Programmable metallization cell memory based on Ag-Ge-S and Cu-Ge-S solid electrolytes”, in Non-Volatile Memory Technology Symposium, pp.83-89, Nov. 2005
[14] J. F. Gibbons and W. E. Beadle, “Switching properties of thin NIO films”, in Solid-State Electron, vol.7, no.11, pp.785-790, 1964.
[15] D. R. Lamb and P. C. Rundle, “A non-filamentary switching action in thermally grown silicon dioxide films”, in J. Appl. Phys. vol.18, pp.29-32, 1967.
[16] Zhuang, W.W., Pan, W. , Ulrich, B.D. , Lee, J.J. , Stecker, L. ,Burmaster, A. , Evans, D.R. , Hsu, S.T. , Tajiri, M. , Shimaoka, A. , Inoue, K. , Naka, T. , Awaya, N. ,Sakiyama, A. , Wang, Y. , Liu, S.Q. , Wu, N.J. and Ignatiev, A. ,”Novel colossal magnetoresistive thin film nonvolatile resistance random access memory (RRAM)”, in IEDM. ,San Francisco, 2002, pp.193-196
[17] Baek, I.G., Lee, M.S. , Seo, S. , Lee, M.-J., Seo, D.H. , Suh, D.-S. , Park, J.C. ,Park, S.O. , Kim, T.I. , Yoo, I.K. , Chung, U-in and Moon, J.T., “Highly scalable nonvolatile resistive memory using simple binary oxide driven by asymmetric unipolar voltage pulses”, in IEDM Tech. Dig., pp.587-590,2004
[18] Lv, H.B., Yin, M., Zhou, P. , Tang, T.A. , Ba-Chen and Lin, Y.Y.” Improvement of Endurance and Switching Stability of Forming-Free CuxO RRAM”, in NVSMW/ICMTD, Opio,pp.52-53, 2008
[19] [C.I. Hsieh, J.H. Jao, W.C.Chen, C.R. Wu and N.T. Shih, “Forming-free Resistive Switching of TiOx Layers with Oxygen Injection Treatments”, in VLSI-TSA, Hsinchu, pp.1-2, Apr .2011.
[20] U.Russo, D. Ielmini, C. Cagli and A. L. Lacaita, “Self-Accelerated Thermal Dissolution Model for Reset Programming in Unipolar Resistive-Switching Memory (RRAM) Devices”, in TED, vol.56,, pp. 193-200, Feb. 2009.
[21] B. Gao, B. Sun, H. Zhang, L. Liu, X. Liu, R. Han and J. Kang, B.Yu, “Unified Physical Model of Bipolar Oxide-Based Resistive Switching Memory”, in EDL, vol.30, pp.1326-1328, 2009.
[22] E. Linn, R. Rosezin, C. Kügeler and R.Waser, “Complementary resistive switches for passive nanocrossbar memories,” in Nat. Mater., vol.9, pp.403-406, Apr .2010.
[23] J. Lee, J.Shin, D. Lee, W. Lee, S. Jung, M. Jo,J. Park, K. P. Biju, S. Kim, S. Park and H. Hwang, “Diode-less Nano-scale ZrOx/HfOx RRAM Device with Excellent Switching Uniformity and Reliability for High-density Cross-point Memory Applications,” in IEDM Tech. Dig., San Francisco, p. 19.5.1 - 19.5.4, Dec. 2010.
[24] M.J. Lee ,Y.Park , B.S.Kang , S.e. Ahn , C. Lee , K. Kim , W. Xianyu , Stefanovich, G. , J.H.n Lee ,S.J. Chung , Y.H. Kim , C.S. Lee,; J.B. Park and I.K.g Yoo, “2-stack ID-IR Cross-point Structure with Oxide Diodes as Switch Elements for High Density Resistance RAM Applications,” in IEDM Tech. Dig., Washington, pp. 771 - 774, 2007.
[25] J. Shin, J. Shin1, I. Kim1, K. P. Biju, M.k Jo1, J. Park, J. Lee, S. Jung1, W. Lee, S. Kim, S. Park and H. Hwang, “TiO2-based metal-insulator-metal selection device for bipolar resistive random access memory cross-point application” in J. Appl. Phys. vol.109, pp.33712, 2011
[26] J.J. Huang and Y.-M. Tseng ; W.C. Luo ; Ch.W. Hsu ; H., T.Hung, “One Selector-One Resistor (1S1R) Crossbar Array for High-density Flexible Memory Applications”, in IEDM Tech. Dig., Washington, pp. 31.7.1 - 31.7.4, 2011.
[27] Y. H. Tseng, C.E. Huang ; Kuo, C.H. , Chih, Y.-D. and C. J. Lin, “High density and ultra small cell size of Contact ReRAM (CR-RAM) in 90nm CMOS logic technology and circuits”, in IEDM Tech. Dig., Baltimore , pp109-112, Dec.2009.
[28] Y. H. Tseng, C.E. Huang , Kuo, C.H. , Chih, Y.-D. and C. J. Lin, “A New High-Density and Ultra small-Cell-Size Contact RRAM (CR-RAM) With Fully CMOS-Logic-Compatible Technology and Circuits”, in IEEE Trans. Electron Devices, vol. 58, p. 53-58, Jan. 2011.
[29] Y.-S. Chen, W.H.Liu, H.Y. Lee1, P.-S. Chen, S.M. Wang, C.H. Tsai,Y.Y. Hsu, P.Y. Gu, W.S. Chen, F.Chen1, C.H. Lien, and M.J. Tsai, “Impact of Compliance Current Overshoot on High Resistance State, Memory Performance, and Device Yield of HfOx Based Resistive Memory and Its Solution”, in VLSI-TSA , Hsinchu, pp.1-2,2011
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *