|
參考文獻 1. Chapin, D.M., C.S. Fuller, and G.L. Pearson, A New Silicon p‐n Junction Photocell for Converting Solar Radiation into Electrical Power. Journal of Applied Physics, 1954. 25(5): p. 676-677. 2. Masuko, K., et al., Achievement of More Than 25%; Conversion Efficiency With Crystalline Silicon Heterojunction Solar Cell. Photovoltaics, IEEE Journal of, 2014. 4(6): p. 1433-1435. 3. Green, M.A., et al., Solar cell efficiency tables (Version 45). Progress in photovoltaics: research and applications, 2015. 23(1): p. 1-9. 4. Matsui, T., et al., Development of highly stable and efficient amorphous silicon based solar cells. Proceedings of the 28th EU PVSEC, 2013: p. 2213-2217. 5. Coakley, K.M. and M.D. McGehee, Conjugated Polymer Photovoltaic Cells. Chemistry of Materials, 2004. 16(23): p. 4533-4542. 6. Hoppe, H. and N.S. Sariciftci, Organic solar cells: An overview. Journal of Materials Research, 2004. 19(07): p. 1924-1945. 7. Kojima, A., et al., Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. Journal of the American Chemical Society, 2009. 131(17): p. 6050-6051. 8. Im, J.-H., et al., 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale, 2011. 3(10): p. 4088-4093. 9. Kim, H.-S., et al., Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%. Sci. Rep., 2012. 2. 10. Lee, M.M., et al., Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites. Science, 2012. 338(6107): p. 643-647. 11. Burschka, J., et al., Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature, 2013. 499(7458): p. 316-319. 12. Liu, M., M.B. Johnston, and H.J. Snaith, Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature, 2013. advance online publication. 13. Boopathi, K.M., et al., Preparation of metal halide perovskite solar cells through a liquid droplet assisted method. Journal of Materials Chemistry A, 2015. 3(17): p. 9257-9263. 14. Barrows, A.T., et al., Efficient planar heterojunction mixed-halide perovskite solar cells deposited via spray-deposition. Energy & Environmental Science, 2014. 7(9): p. 2944-2950. 15. Kim, J.H., et al., Enhanced Environmental Stability of Planar Heterojunction Perovskite Solar Cells Based on Blade-Coating. Advanced Energy Materials, 2015. 5(4): p. n/a-n/a. 16. Chen, Q., et al., Planar Heterojunction Perovskite Solar Cells via Vapor-Assisted Solution Process. Journal of the American Chemical Society, 2014. 136(2): p. 622-625. 17. Roldan-Carmona, C., et al., Flexible high efficiency perovskite solar cells. Energy & Environmental Science, 2014. 7(3): p. 994-997. 18. You, J., et al., Low-Temperature Solution-Processed Perovskite Solar Cells with High Efficiency and Flexibility. ACS Nano, 2014. 8(2): p. 1674-1680. 19. Zhou, H., et al., Interface engineering of highly efficient perovskite solar cells. Science, 2014. 345(6196): p. 542-546. 20. Chiang, C.-H., Z.-L. Tseng, and C.-G. Wu, Planar heterojunction perovskite/PC71BM solar cells with enhanced open-circuit voltage via a (2/1)-step spin-coating process. Journal of Materials Chemistry A, 2014. 2(38): p. 15897-15903. 21. Xiao, Z., et al., Solvent Annealing of Perovskite-Induced Crystal Growth for Photovoltaic-Device Efficiency Enhancement. Advanced Materials, 2014. 26(37): p. 6503-6509. 22. Xu, Y., et al., Efficient Hybrid Mesoscopic Solar Cells with Morphology-Controlled CH3NH3PbI3-xClx Derived from Two-Step Spin Coating Method. ACS Applied Materials & Interfaces, 2015. 7(4): p. 2242-2248. 23. Dharani, S., et al., Incorporation of Cl into sequentially deposited lead halide perovskite films for highly efficient mesoporous solar cells. Nanoscale, 2014. 6(22): p. 13854-13860. 24. Brabec, C.J., et al., The influence of materials work function on the open circuit voltage of plastic solar cells. Thin Solid Films, 2002. 403–404(0): p. 368-372. 25. Kim, H., et al. Origin of the open circuit voltage in conjugated polymer-fullerene photovoltaic cells. 2004. 26. Stranks, S.D., et al., Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber. Science, 2013. 342(6156): p. 341-344. 27. Seo, J., et al., Benefits of very thin PCBM and LiF layers for solution-processed p-i-n perovskite solar cells. Energy & Environmental Science, 2014. 7(8): p. 2642-2646. 28. Ma, Y., et al., A highly efficient mesoscopic solar cell based on CH3NH3PbI3-xClx fabricated via sequential solution deposition. Chemical Communications, 2014. 50(83): p. 12458-12461. 29. Wang, S., et al., Smooth perovskite thin films and efficient perovskite solar cells prepared by the hybrid deposition method. Journal of Materials Chemistry A, 2015. 30. Zhao, Y. and K. Zhu, CH3NH3Cl-Assisted One-Step Solution Growth of CH3NH3PbI3: Structure, Charge-Carrier Dynamics, and Photovoltaic Properties of Perovskite Solar Cells. The Journal of Physical Chemistry C, 2014. 118(18): p. 9412-9418. 31. Im, J.-H., et al., Growth of CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells. Nat Nano, 2014. 9(11): p. 927-932.
|