帳號:guest(3.133.120.91)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳燕儲
作者(外文):Chen,Yen Chu
論文名稱(中文):使用新式二階段溶液塗佈法製作有機-無機混成鈣鈦礦太陽電池
論文名稱(外文):Organic-Inorganic Hybrid Perovskite Solar Cell with Modified Two-Step Solution Processing
指導教授(中文):洪勝富
指導教授(外文):Horng,Sheng Fu
口試委員(中文):孟心飛
林詩淳
口試委員(外文):Meng,Hsin Fei
Albert Lin
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電子工程研究所
學號:102063542
出版年(民國):104
畢業學年度:103
語文別:中文英文
論文頁數:60
中文關鍵詞:鈣鈦礦太陽電池溶液製程二步法氯鈣鈦礦
外文關鍵詞:perovskite solar cellsolution processtwo-stepCH3NH3PbCl
相關次數:
  • 推薦推薦:0
  • 點閱點閱:408
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本論文利用二步法成膜平整的優點,以全溶液製程的方式製作出有機-無機混成鈣鈦礦太陽電池元件。使用ITO/PEDOT:PSS/Perovskite/PCBM/Al來做為元件結構,首先研究純碘鈣鈦礦(CH3NH3PbI3)做為主動層之效用,並探討不同PbI2與MAI的比例對元件特性的影響,接著利用一種新穎的方法,藉由添加氯鈣鈦礦(CH3NH3PbCl3)來提高元件之短路電流,我們也利用了此特點,對氯鈣鈦礦進行了一系列的分析,最後經過了多次的實驗改善,成功製作出效率達10.04%之最佳元件,並有著短路電流為19.98 mA/cm2之表現。本論文所提出的方法具有可低溫製程的優點以及良好的穩定性,對於未來欲往大面積化發展的太陽電池是相當有利的。
關鍵字: 鈣鈦礦太陽電池、溶液製程、二步法、氯鈣鈦礦
Taking advantage of the high uniformity of two-step process, a novel all-solution method to fabricate organic-inorganic perovskite solar cells with enhanced short-circuit current was introduced in this thesis. The device structure was ITO/PEDOT:PSS/Perovskite/PCBM/Al. Firstly, using CH3NH3PbI3 as active layer, the effects of the ratio of MAI to PbI2 on the photovoltaic parameters of the device were analyzed. Secondly, the use of CH3NH3PbCl3 as an interlayer was explored and was found to enhance greatly the short-circuit current. With this modified process, the device fabrication processes were optimized and the best power conversion efficiency of 10.04% with a short-circuit current density of 19.98 mA/cm2 were achieved. With its low processing temperature and high stability, our modified process may be a promising approach for the large-area production of perovskite solar cells.
Keywords: perovskite solar cell, solution process, two-step, CH3NH3PbCl
目 錄
摘要 I
Abstract II
目 錄 III
圖索引 V
表索引 VII
第一章 緒論 1
1.1 研究背景 1
1.1.1 前言 1
1.1.2 太陽電池之發展 2
1.1.3 有機太陽電池之發展 3
1.1.4 有機-無機混成鈣鈦礦太陽電池之發展 7
1.2 研究動機與文獻回顧 9
1.2.1 有機-無機混成鈣鈦礦太陽電池之優點 9
1.2.2 平面異質結構鈣鈦礦太陽電池之起源發展 10
1.2.3 p-i-n結構與二步法的發展及添加氯改變元件特性之探討 11
1.3 論文架構 12
第二章 實驗原理 13
2.1 太陽電池基本簡介 13
2.1.1 太陽電池基本操作原理 13
2.1.2 理想太陽電池等效模型 14
2.1.3 實際太陽電池等效模型 15
2.1.4 太陽電池基本參數 16
2.1.5 太陽電池操作分析 21
2.2 論文研究理論 24
2.2.1 主動層材料 24
2.2.2 電洞/電子傳輸層材料 25
2.2.3 陽/陰極材料 27
2.3 元件結構與能帶圖 28
第三章 實驗方法與流程 29
3.1 有機-無機混成鈣鈦礦太陽電池元件製作流程圖 29
3.2 ITO玻璃基板設計及圖樣化 29
3.3 ITO玻璃基板準備及清洗 31
3.4 電洞傳輸層成膜 32
3.5 主動層成膜 33
3.6 電子傳輸層成膜 34
3.7 熱蒸鍍電極 35
3.8 元件封裝 36
3.9 元件量測 36
第四章 實驗結果與討論 38
4.1 純碘鈣鈦礦之p-i-n結構元件 38
4.1.1 二步法介紹 38
4.1.2 碘化亞鉛(PbI2)成膜後處理之比較 39
4.1.3 甲基碘化胺(CH3NH3I, MAI)之濃度與轉速比較 41
4.2 添加氯鈣鈦礦之p-i-n結構元件 43
4.2.1 成膜氯鈣鈦礦 43
4.2.2 SEM分析 45
4.2.3 XRD與XPS分析 48
4.2.4 氯鈣鈦礦濃度比較 51
4.3 添加氯鈣鈦礦之比較分析與元件特性改善 52
4.3.1 甲基碘化胺(CH3NH3I, MAI)濃度比較 52
4.3.2 主動層退火時間比較 54
4.3.3 IPCE及吸收之量測與分析 55
第五章 結論 57
參考文獻 58


參考文獻
1. Chapin, D.M., C.S. Fuller, and G.L. Pearson, A New Silicon p‐n Junction Photocell for Converting Solar Radiation into Electrical Power. Journal of Applied Physics, 1954. 25(5): p. 676-677.
2. Masuko, K., et al., Achievement of More Than 25%; Conversion Efficiency With Crystalline Silicon Heterojunction Solar Cell. Photovoltaics, IEEE Journal of, 2014. 4(6): p. 1433-1435.
3. Green, M.A., et al., Solar cell efficiency tables (Version 45). Progress in photovoltaics: research and applications, 2015. 23(1): p. 1-9.
4. Matsui, T., et al., Development of highly stable and efficient amorphous silicon based solar cells. Proceedings of the 28th EU PVSEC, 2013: p. 2213-2217.
5. Coakley, K.M. and M.D. McGehee, Conjugated Polymer Photovoltaic Cells. Chemistry of Materials, 2004. 16(23): p. 4533-4542.
6. Hoppe, H. and N.S. Sariciftci, Organic solar cells: An overview. Journal of Materials Research, 2004. 19(07): p. 1924-1945.
7. Kojima, A., et al., Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. Journal of the American Chemical Society, 2009. 131(17): p. 6050-6051.
8. Im, J.-H., et al., 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale, 2011. 3(10): p. 4088-4093.
9. Kim, H.-S., et al., Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%. Sci. Rep., 2012. 2.
10. Lee, M.M., et al., Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites. Science, 2012. 338(6107): p. 643-647.
11. Burschka, J., et al., Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature, 2013. 499(7458): p. 316-319.
12. Liu, M., M.B. Johnston, and H.J. Snaith, Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature, 2013. advance online publication.
13. Boopathi, K.M., et al., Preparation of metal halide perovskite solar cells through a liquid droplet assisted method. Journal of Materials Chemistry A, 2015. 3(17): p. 9257-9263.
14. Barrows, A.T., et al., Efficient planar heterojunction mixed-halide perovskite solar cells deposited via spray-deposition. Energy & Environmental Science, 2014. 7(9): p. 2944-2950.
15. Kim, J.H., et al., Enhanced Environmental Stability of Planar Heterojunction Perovskite Solar Cells Based on Blade-Coating. Advanced Energy Materials, 2015. 5(4): p. n/a-n/a.
16. Chen, Q., et al., Planar Heterojunction Perovskite Solar Cells via Vapor-Assisted Solution Process. Journal of the American Chemical Society, 2014. 136(2): p. 622-625.
17. Roldan-Carmona, C., et al., Flexible high efficiency perovskite solar cells. Energy & Environmental Science, 2014. 7(3): p. 994-997.
18. You, J., et al., Low-Temperature Solution-Processed Perovskite Solar Cells with High Efficiency and Flexibility. ACS Nano, 2014. 8(2): p. 1674-1680.
19. Zhou, H., et al., Interface engineering of highly efficient perovskite solar cells. Science, 2014. 345(6196): p. 542-546.
20. Chiang, C.-H., Z.-L. Tseng, and C.-G. Wu, Planar heterojunction perovskite/PC71BM solar cells with enhanced open-circuit voltage via a (2/1)-step spin-coating process. Journal of Materials Chemistry A, 2014. 2(38): p. 15897-15903.
21. Xiao, Z., et al., Solvent Annealing of Perovskite-Induced Crystal Growth for Photovoltaic-Device Efficiency Enhancement. Advanced Materials, 2014. 26(37): p. 6503-6509.
22. Xu, Y., et al., Efficient Hybrid Mesoscopic Solar Cells with Morphology-Controlled CH3NH3PbI3-xClx Derived from Two-Step Spin Coating Method. ACS Applied Materials & Interfaces, 2015. 7(4): p. 2242-2248.
23. Dharani, S., et al., Incorporation of Cl into sequentially deposited lead halide perovskite films for highly efficient mesoporous solar cells. Nanoscale, 2014. 6(22): p. 13854-13860.
24. Brabec, C.J., et al., The influence of materials work function on the open circuit voltage of plastic solar cells. Thin Solid Films, 2002. 403–404(0): p. 368-372.
25. Kim, H., et al. Origin of the open circuit voltage in conjugated polymer-fullerene photovoltaic cells. 2004.
26. Stranks, S.D., et al., Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber. Science, 2013. 342(6156): p. 341-344.
27. Seo, J., et al., Benefits of very thin PCBM and LiF layers for solution-processed p-i-n perovskite solar cells. Energy & Environmental Science, 2014. 7(8): p. 2642-2646.
28. Ma, Y., et al., A highly efficient mesoscopic solar cell based on CH3NH3PbI3-xClx fabricated via sequential solution deposition. Chemical Communications, 2014. 50(83): p. 12458-12461.
29. Wang, S., et al., Smooth perovskite thin films and efficient perovskite solar cells prepared by the hybrid deposition method. Journal of Materials Chemistry A, 2015.
30. Zhao, Y. and K. Zhu, CH3NH3Cl-Assisted One-Step Solution Growth of CH3NH3PbI3: Structure, Charge-Carrier Dynamics, and Photovoltaic Properties of Perovskite Solar Cells. The Journal of Physical Chemistry C, 2014. 118(18): p. 9412-9418.
31. Im, J.-H., et al., Growth of CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells. Nat Nano, 2014. 9(11): p. 927-932.
(此全文未開放授權)
電子全文
摘要檔
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *