帳號:guest(3.144.233.28)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):吳鈞雄
作者(外文):Wu, Jiun-Shiung
論文名稱(中文):應用於先進鰭式電晶體邏輯製程之接觸槽耦合浮動閘極電漿充電損害偵測元件研究
論文名稱(外文):A Study of Plasma Induced Damage Monitor by Contact Slot Floating Gate Coupling in advanced FinFET Logic CMOS Technology
指導教授(中文):林崇榮
指導教授(外文):Lin, Chrong-Jung
口試委員(中文):金雅琴
施教仁
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電子工程研究所
學號:102063532
出版年(民國):104
畢業學年度:103
語文別:中文
論文頁數:71
中文關鍵詞:電漿損害天線效應接觸槽耦合
外文關鍵詞:Plasma induced damageantenna effectcontact slot coupling
相關次數:
  • 推薦推薦:0
  • 點閱點閱:497
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
近十年來,半導體產業跟隨著摩爾定理的預測,元件尺寸持續微縮,而為了克服漏電或電流大小等問題,研究人員發想了各種新的結構以及製程。在20奈米以下的邏輯製程,有別於以往的平面型結構,改為立體型閘極包覆之形狀。此結構藉由物理方式去使空乏區域能完整的環繞著基底,使其空乏區漏電大幅降低,且提高閘極控制能力,而達到繼續微縮製程之目的。
而隨著閘極介電層的厚度降低,過往的天線效應(Antenna Effect)偵測方式需要改變。以前可以藉由設計大面積之金屬板連接至閘極,觀察電晶體之次臨界擺幅(Subthreshold Swing)、臨界電壓(Threshold Voltage)、依時性介電層崩潰測試(Time Dependent Dielectric Breakdown, TDDB)等等之變化,藉由這些參數去定量天線效應影響之程度。或是藉由一些量測方式去偵測天線效應造成之損害,如電容-電壓量測、閘極漏電流量測等方式去探討,但隨著氧化層厚度降低,由於FN穿隧電流會直接流過氧化層,使得天線效應對於閘極氧化層的影響無法利用電晶體的參數快速得知其受損情形,且無法量化受損程度,因此需要其他方法偵測。
而在此篇論文,提出了一個接觸槽耦合浮動閘極之結構,利用耦合電壓方式去傳遞電漿製程時產生的高電壓至浮動閘極,吸引基底之電荷進入浮動閘極。因此我們可利用此特性將電荷儲存在浮動閘極,使我們能定量且定性的分析電漿充電損害的嚴重程度。此元件可作為在晶圓生產時的測試圖樣,置放於晶圓的不同位置,並連接至不同層之金屬層,可即時的讓人員藉由簡易的電性量測影響較嚴重的金屬層位置,可迅速的聚焦電漿損害發生原因,對於良率提升以及損害來源之分析有很大的幫助。
Semiconductor manufacturing technology has followed the prediction of Moore’s Law in past decades, and the size of transistors scaled down continually. To overcome the issue of leakage current and the on current level, researchers come up with new structures and process method. In the CMOS logic process under 20nm, we change to 3D structure which has gate covering the fin. We can make the depletion region fully surround the substrate in FinFET structure, and this design leads to low leakage current and excellent gate control. It is advantage to scale down the device.
When the thickness of gate dielectric scales down, the method to detect the antenna effect needs to be changed. We can connect the gate to metal layer which has big area, and observe the subthreshold swing, threshold voltage, transconductance and TDDB results of the transistor. And we can use these parameters to detect the influences of antenna effect. Also, we can use some measurement skills to detect the plasma induced damage. For example, C-V measurement, gate leakage current measurement. But as the dielectric thickness scales down, the FN leakage current will go through the dielectric directly, and the damage will not show in the parameters of transistor, and we will underestimate the damage due to antenna effect. So we need another methods or devices to trace the plasma induced damage.
In this paper, we propose a structure using contact coupling floating gate, and we use it to pass the high voltage to floating gate to attract the charges from substrate in the plasma process. We can store the charges in the floating gate and quantitatively and qualitatively analyze the damage due to plasma charging. This device can be used as the test pattern on the wafer in the processes. We can put it on the different locations and connect it to different metal layers. Researchers can detect the damage on time and focus on the issue by simple measurement. It will help a lot in the process of wafer.
摘要 i
Abstract ii
致謝 iv
內文目錄 v
附圖目錄 vii
附表目錄 ix
第一章 序論 1
1.1 天線效應簡介 1
1.2 研究動機 3
1.3 論文大綱 4
第二章 天線效應偵測方法回顧與發展 6
2.1 臨界電壓、電導、次臨界擺幅特性參數偵測 6
2.2 氧化層崩潰所需電荷測試(QBD) 7
2.3 電壓-時間測試(IETR) 7
2.4 閘極漏電流測試(Gate Leakage Current) 8
2.5 電容-電壓測試(C-V) 8
2.6 掃描崩潰電壓測試(Ramp Breakdown Voltage) 8
2.7 EEPROM偵測器 9
2.8 小結 10
第三章 天線效應偵測元件介紹與操作機制簡介 18
3.1 元件結構與製程介紹 18
3.1.1 元件結構 18
3.1.2 製程介紹 19
3.2 載子注入機制回顧 21
3.2.1 Fowler-Nordheim(FN) 穿隧效應 21
3.2.2 通道熱電子注入機制(Chanel Hot Electron, CHE) 21
3.3 浮動閘極寄生電容 23
3.4 操作原理 23
3.5 小結 24
第四章 天線效應偵測元件量測與分析 33
4.1 量測環境 33
4.2 基本特性量測分析 33
4.3 不同天線參數之影響(面積、金屬層位置) 34
4.4 不同耦合程度之影響 35
4.5 其他電壓耦合方式 36
4.6 晶圓位置之變異性 36
4.7 資料儲存性 38
4.8 薄氧化層之影響 38
4.9 小結 39
第五章 總結 62
5.1 元件與現行偵測方法之比較 62
5.2 結語與未來展望 63
參考文獻 65
[1] P. Simon, J.M. Luchies and W. Maly, “Identification of plasma-induced damage conditions in VLSI designs,” Semiconductor Manufacturing, IEEE Transactions on , vol.13, no.2, pp.136,144, May 2000.
[2] Z. Wang, J. Ackaert, A. Scarpa, C. Salm, F.G. Kuper and M. Vugts, “Strategies to cope with plasma charging damage in design and layout phases,” Integrated Circuit Design and Technology, 2005. ICICDT 2005, pp.91,98, 9-11 May 2005.
[3] H. C. Shin and C. Hu, “Thin gate oxide damage due to plasma processing”, Semicond. Sci. Technol. vol. 11, (1996). p463.
[4] Z. Wang, “Detection of and protection against plasma charging damage in modern IC technologies”, PhD Thesis, 2004, ISBN 90-365-2079-7.
[5] F. F. Chen, “Plasma-Induced Oxide Damage: A Status Report”, Department of Electrical Engineering, UCLA, October 1996.
[6] K. Eriguchi, Y. Takao and K. Ono, "A new prediction model for effects of plasma-induced damage on parameter variations in advanced LSIs," IC Design & Technology (ICICDT), 2011 IEEE International Conference on , pp.1,4, 2-4 May 2011.
[7] C. Gabriel, “Charge buildup damage to gate oxide,” Microelectronic Processes, Sensors, and Controls, K. Elliott, 1. Hauser, D. Kwong, A. Ray, Eds., in Proc. SPIE, vol. 2091, pp. 239-247, 1994.
[8] W. H. Choi, P. Jain, C.H. Kim, “An array-based circuit for characterizing latent Plasma-Induced Damage,” Reliability Physics Symposium (IRPS), 2013 IEEE International , pp.4A.3.1,4A.3.4, 14-18 April 2013.
[9] McVittie, J.P., “Process charging in ULSI: mechanisms, impact and solutions,” Electron Devices Meeting, 1997. IEDM '97. Technical Digest., International, pp.433,436, 10-10 Dec. 1997.
[10] Z. Wang, P. Tanner, C. Salm, T. Mouthaan, F. Kuper, M. Andriesse, and E. van der Drift, “Plasma-Induced Charging Damage of Gate Oxides” STW, Mierlo, 1999, pp. 593.
[11] H. Shin and C. Hu, “Plasma etching antenna effect on oxide- silicon interface reliability,” Solid-Stare Electron., vol. 36, no. 9, pp. 1356-1 358, 1993.
[12] J.B. Friedmann, J.L. Shohet, R. Mau, N. Hershkowitz, S. Bisgaard, S. Ma, McVittie and P. James, “Plasma-parameter dependence of thin-oxide damage from wafer charging during electron-cyclotron-resonance plasma processing,” Semiconductor Manufacturing, IEEE Transactions on , vol.10, no.1, pp.154,166, Feb 1997.
[13] P.J. Liao, S.H. Liang, H.Y. Lin, J.H. Lee, Y. Lee, J.R. Shih, S.H. Gao, S.E. Liu and K. Wu, “Physical origins of plasma damage and its process/gate area effects on high-k metal gate technology,” Reliability Physics Symposium (IRPS), 2013 IEEE International , pp.4C.3.1,4C.3.5, 14-18 April 2013
[14] K. S. Min, C. Y. Kang, O. S.Yoo, B. J. Park, S. W. Kim, C. D. Young, D. Heh, G. Bersuker, B. H. Lee and G. Y. Yeom, “Plasma induced damage of aggressively scaled gate dielectric (EOT ≪ 1.0nm) in metal gate/high-k dielectric CMOSFETs,” Reliability Physics Symposium, 2008. IRPS 2008. IEEE International , pp.723,724, April 27 2008-May 1 2008.
[15] A. Martin, “Review on the Reliability Characterisation of Plasma-Induced Damage, ” J. Vac. Sci. Technol. B, 27(1), pp.426–434, 2009.
[16] K. Eriguchi and K. Ono, “Quantitative and comparative characterizations of plasma process-induced damage in advanced metal–oxide– semiconductor devices,” J. Phys. D, Appl. Phys., vol. 41, no. 2, p. 024 002, Jan. 2008.
[17] K. Eriguchi, M. Kamei, Y. Takao and K. Ono, “High-k MOSFET performance degradation by plasma process-induced charging damage — Impacts on device parameter variation,” Integrated Reliability Workshop Final Report (IRW), 2012 IEEE International , pp.80,84, 14-18 Oct. 2012.
[18] C.D. Young, G. Bersuker, F. Zhu, K. Matthews, R. Choi, S.C. Song, H.K. Park, J.C. Lee and B.H. Lee, “Comparison of Plasma-Induced Damage in SIO2/TIN and HFO2/TIN Gate Stacks,” Reliability physics symposium, 2007. proceedings. 45th annual. ieee international , pp.67,70, 15-19 April 2007.
[19] C.D. Young, G. Bersuker, F. Zhu, K. Matthews, R. Choi, S.C. Song, H.K. Park, J.C. Lee and B.H. Lee, “Comparison of Plasma-Induced Damage in SIO2/TIN and HFO2/TIN Gate Stacks,” Reliability physics symposium, 2007. proceedings. 45th annual. ieee international, pp.67,70, 15-19 April 2007.
[20] K.P. Cheung, C.T. Liu, C.P. Chang, J.I. Colonell, W.Y.C. Lai, C.S. Pai, H.Vaidya, R. Liu, J.T. Clemens, E. Hasegawa, “Charging damage in thin gate-oxides-better or worse?,” Plasma Process-Induced Damage, 1998 3rd International Symposium on , pp.34,37, 4-5 Jun 1998.
[21] Donggun Park; Chenming Hu, "Plasma charging damage on ultrathin gate oxides," Electron Device Letters, IEEE , vol.19, no.1, pp.1,3, Jan. 1998
[22] Bayoumi, A.; Shawming Ma; Langley, B.; Cox, M.; Tavassoli, M.; Diaz, C.; Min Cao; Marcoux, P.; Ray, G.; Greene, W., "Scalability Of Plasma Damage With Gate Oxide Thickness," Plasma Process-Induced Damage, 1997 , vol., no., pp.11,14, 13-14 May 1997
[23] Eriguchi, K.; Kamei, M.; Takao, Y.; Ono, K., "High-k MOSFET performance degradation by plasma process-induced charging damage — Impacts on device parameter variation," Integrated Reliability Workshop Final Report (IRW), 2012 IEEE International , vol., no., pp.80,84, 14-18 Oct. 2012
[24] Crook, D.; Domnitei, M.; Webb, M.; Bonini, J., "Evaluation of modern gate oxide technologies to process charging," Reliability Physics Symposium, 1993. 31st Annual Proceedings., International , vol., no., pp.255,261, 23-25 March 1993
[25] Martin, A.; Bukethal, C.; Ryden, K.-H., "Fast Wafer Level Reliability Monitoring: Quantification of Plasma-Induced Damage Detected on Productive Hardware," Device and Materials Reliability, IEEE Transactions on , vol.9, no.2, pp.135,144, June 2009
[26] Cheung, K.P.; Martin, S.; Misra, D.; Steiner, K.; Colonell, J.I.; Chang, C.P.; Lai, W.Y.C.; Liu, C.T.; Liu, R.; Pai, C.S., "Impact of plasma-charging damage polarity on MOSFET noise," Electron Devices Meeting, 1997. IEDM '97. Technical Digest., International , vol., no., pp.437,440, 10-10 Dec. 1997
[27] Cheung, K.P., "An efficient method for plasma-charging damage measurement," Electron Device Letters, IEEE , vol.15, no.11, pp.460,462, Nov. 1994
[28] Chi-Chun Chen; Horng-Chih Lin; Chun-Yen Chang; Mong-Song Liang; Chien, Chao-Hsin; Szu-Kang Hsien; Tiao-Yuan Huang; Tien-Sheng Chao, "Plasma-induced charging damage in ultrathin (3-nm) gate oxides," Electron Devices, IEEE Transactions on , vol.47, no.7, pp.1355,1360, Jul 2000
[29] Cheung, K.P., "Advanced plasma and advanced gate dielectric - a charging damage prospective," Reliability Physics Symposium Proceedings, 2006. 44th Annual., IEEE International , vol., no., pp.360,364, 26-30 March 2006
[30] Ma, Shawming; Abdel-Ati, W.L.N.; McVittie, James P., "Sensitivity and limitations of plasma charging damage measurements using MOS capacitors structures," Electron Device Letters, IEEE , vol.18, no.9, pp.420,422, Sept. 1997
[31] Hook, T.B.; Harmon, D.; Chuan Lin, "Detection of thin oxide (3.5 nm) dielectric degradation due to charging damage by rapid-ramp breakdown," Reliability Physics Symposium, 2000. Proceedings. 38th Annual 2000 IEEE International , vol., no., pp.377,388, 2000
[32] Lai, W.; Harmon, D.; Hook, T.; Ontalus, V.; Gambino, J., "Ultra-thin Gate Dielectric Plasma Charging Damage in SOI Technology," Reliability Physics Symposium Proceedings, 2006. 44th Annual., IEEE International , vol., no., pp.370,373, 26-30 March 2006
[33] Chrong-Jung Lin, Hsin-Ming Chen, “Wafer-Level Antenna Effect Detection Pattern For VLSI,” US Patent # US 6586765 B2, Jul.1, 2003.
[34] Shiu-Ko Jangiian, Szu-An Wu and Sheng-Wen Chen, “Metal gate structure of a semiconductor device,” US Patent # US 8294202 B2, Dec.23, 2012.
[35] Dick James, “High-kmetal gates in leading edge silicon devices,” IEEE Advanced Semiconductor Manufacturing Conference (ASMC), May 2012, pp. 346-353.
[36] T. H. Ning, “Hot-electron emission from silicon into silicon dioxide,” Solid-State Electronics, vol. 21, 1978, pp. 273-282.
[37] Chenming Hu, “Lucky-electron model of channel hot electron emission,” IEEE International Electron Devices Meeting, Dec. 1979, pp. 22-25.
[38] Simon Tam, P.-K. Ko and Chenming Hu, “Lucky-electron model of channel hot-electron injection in MOSFET’s,” IEEE Transections on Electron Devices, vol. 31, no. 9, Sep 1984, pp. 1116-1125.
[39] Richard B. Fair and Robert C. Sun, “Threshold voltage instability in MOSFET's due to channel hot hole emission,” IEEE Transections on Electron Devices, vol. 28, no. 1, Jan 1981, pp. 83-94.
[40] Paolo Pavan, Roberto Bez, Piero Olivo and Enrico Zanoni, “Flash memory cells-an overview,” Proceedings of the IEEE, vol. 85, no. 8, Aug 1907, pp. 1248-1271.

(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *