帳號:guest(3.145.180.133)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):洪坤榮
作者(外文):Hung, Kun-Rong
論文名稱(中文):微型寬波段近紅外光源設計與製作
論文名稱(外文):Design and Fabrication of Micro Broadband Near-Infrared Light Source
指導教授(中文):吳孟奇
何充隆
指導教授(外文):Wu, Meng-Chyi
Ho, Chong-Long
口試委員(中文):張守進
劉埃森
口試委員(外文):Chang, Shoou-Jinn
Liu, Ai-Sen
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電子工程研究所
學號:102063531
出版年(民國):104
畢業學年度:103
語文別:英文
論文頁數:90
中文關鍵詞:光子晶體微機電光譜近紅外光
外文關鍵詞:Photonic crystalsMEMSSpectrumNear-Infrared Light
相關次數:
  • 推薦推薦:0
  • 點閱點閱:353
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本論文利用半導體製程技術,在矽基板上採用金屬鎢作為微燈絲的發光源,提供一穩定的電壓源給予燈絲,當有足夠的熱源累積於燈絲上時,便會有紅外光的光源產生。且在燈絲上設計不同週期之光子晶體模型,藉由此結構將發光波段侷限在紅外光的範圍,最後使用矽等向性蝕刻來進行後續矽基板掏空製程,以達成研究之成果。我們採用兩種不同製程方式進行元件之製作與改善。在舊製程中有三點問題,第一點問題是氧化鋅無法在高溫下進行熱退火製程,使得鎢薄膜無法得到低阻值,使得電流不易通過燈絲區域,在後續之元件量測中,熱無法累積在鎢絲上,燈絲不易發光。第二點問題是後續掏空製程問題,元件易受液體之表面張力影響,會有塌陷之問題,促使良率過低。第三點問題是鎢薄膜必須依靠外接基板和打線來支撐,以至於元件面積過大無法封裝在TO座上。而在新製程中,能將此三點問題有效的解決。
最後完成微型寬波段近紅外光源,光譜集中在近紅外區域以及微燈絲在較低的輸出功率下操作,在900-2500 nm的光轉換效率在35%以上且高於市售燈泡,最後也證明光子晶體可以抑制可見光區域的光譜並集中在近紅外光範圍,且面積只有1840μm × 1840μm.
In this paper, the use of semiconductor process technology in the silicon substrate with tungsten filament as a micro light source provides a stable voltage source to be given filaments, when there is sufficient heat accumulating in the filament, infrared light generates. With the design of photonic crystal models with different cycles on the filament, the light at the visible region can be restrained. Finally, we use silicon isotropic etching for suspension process in order to achieve the results of our research.
There are three problems in the old process. The first is the zinc oxide cannot go through the thermal annealing process at a high temperature, so the tungsten film cannot obtain a low resistance, which causes that the heat cannot accumulate on the tungsten. Therefore, the filament is not easy to emit. The second is the problem of the suspension process. The component is susceptible to the surface tension of liquids, which might cause the component to collapse, thus the yield gets lower in the old process. The third is the component area is too large to be packaged. In the new process, the above problems can all be solved efficiently. Finally, it's proved that the photonic crystal can restrain the spectrum of the visible light region with only 1840μm × 1840μm in area.
中文摘要
Abstract
Content
List of Figure
List of Table
1-1 Micro-electro-mechanical System Introduction
1-2 Motivation
Chapter 2 Theoretical Basic
2-1 Photonic Crystals
2-2 Planewave Expansion
2-3 Black Body Radiation
Chapter 3 Experimental Process
3-1 Experimental Design
3-2 Design of Mask
3-2-1 Old Fabrication Process Mask
3-2-2 New Fabrication Process Mask
3-3 Fabrication Process of Micro-filament
3-3-1 Experimental details – with sacrificial layer
3-3-2 Experimental details – without sacrificial layer
3-4 Establish Sealed Package
3-4-1 Established Sealed Package for Old Process
3-4-2 Established Sealed Package for New Process
Chapter 4 Experimental Measurement Results
4-1 Fabrication Process of Metallic Filament
4-1-1 The Deposition Condition of Tungsten Thin Film
4-1-2 The Resistivity of Tungsten Thin Film
4-1-3 Established Photonic Crystals Pattern Filament
4-1-4 The Photonic Crystal Simulation
4-1-5 The Establishment of an Isolation Layer Film
4-2 Suspension Process for Micro-filament
4-3 Surface Tension
4-4 The Measurement for Micro-Filament
4-4-1 Spectrum Measurement in Vacuum Probe System
4-4-2 Compared with Commercially Available Lamps
Chapter 5 Conclusion
Reference
[1] http://zeiss-campus.magnet.fsu.edu/articles/lightsources/tungstenhalogen.html
[2] Annual Global Data Center IP Traffic to Reach 4.8ZB in 2015. http://www.storagenewsletter.com/news/marketreport/cisco-global-cloud-index
[3] S. Y. Lin, J. G. Fleming, and I. E. Kady, “Three-dimensional photonic-crystal emission through thermal excitation,” Opt. Lett., 28, 1909, 2003.
[4] S. Y. Lin, J. Moreno, and J. G. Fleming, “3D photonic-crystal emitter for thermal photovoltaic power generation,” Appl. Phys. Lett., 83, 380, 2003.
[5] Eli Yablanovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett., 20, 2059, 1987.
[6] http://www.laserfocusworld.com/articles/2011/07/mit-researchers-use.html
[7] P. Bermel, M. Ghebrebrhan, W. Chan, Y. X. Yeng, M. Araghchini, R. Hamam, C. H. Marton, K. F. Jensen, M. Solja, J. D. Joannopoulos, S. G. Johnson and I. Celanovic, “Design and global optimization of high-efficiency thermophotovoltaic systems,” Opt. Express 18, A314 ,2010.
[8] http://bse.nchu.edu.tw/new_page_73.htm
[9] http://www.utekinco.com.tw/action.php?p=techNewsDisplay&&tn_id=10
[10] V. Ntziachristos, C. Bremer, R. Weissleder, “Fluorescence imaging with near-infrared light: new technological advances that enable in vivo molecular imaging,” January 2003, Volume 13, Issue 1, pp 195-208.
[11] E. Neil Lewis et al., “Near-infrared Chemical Imaging and the PAT Initiative,” Spectroscopy 19(4) pp. 26-36, 2004.
[12] http://www.spectralevolution.com/applications_plastic.html
[13] K. M. Ho, C. T. Chan, and C. M. Soukoulis, “Existence of a photonic gap in periodic dielectric structure, ” Phys. Rev. Lett. 65, 3152 (1990).
[14] E. Yablonovitch, T. J. Gmitter, K. M. Leung, “Photonic band structure: The face-centered-cubic case employing nonspherical atoms,” Phys. Rev. Lett. 67, 2295 (1991).
[15] J. D. Joannopoulos et al., “Photonic Crystals,” Princeton University Press, 1995.
[16] Pi-Gang Luan and Zhen Ye, Two dimensional photonic crystals, preprint,http://140.115.40.128/publication/P03.pdf (July 10, 2004).
[17] K. Sakoda, “Optic Properties of Photonic Crystals,” (Springer, 2001), Chap 7.
[18] Adkins, C. J. (1983). Equilibrium Thermodynamics (3rd ed.). Cambridge University Press. ISBN 0-521-25445-0.
[19] Bohr, N. (1913). “On the constitution of atoms and molecules,” Philosophical Magazine 26: 1–25. doi:10.1080/14786441308634993.
[20] Bohren, C. F.; Clothiaux, E. E. (2006). Fundamentals of Atmospheric Radiation. Wiley-VCH. ISBN 3-527-40503-8.
[21] http://en.wikipedia.org/wiki/Aluminium_oxide
[22] http://accuratus.com/alumox.html
[23] http://www.sigmaaldrich.com/catalog/product/sial/11028?lang=en®ion=TW
[24] http://en.wikipedia.org/wiki/Tungsten_hexafluoride
[25] M. Yu, K. Ahn, and R. Joshi, “Surface Chemistry of the WF6-based Chemical Vapor Deposition of Tungsten,” IBM J Res Dev 34 875 (1990).
[26] Joo-Wan Lee, “Physical and Electrical Characteristics of Physical Vapor-Deposited Tungsten for Bit Line Process,” et al 2004 Jpn. J. Appl. Phys. 43 8007.
[27] L. M. Ephrath and E. J. Petrillo, “Parameter and Reactor Dependence of Selective Oxide RIE in CF4 + H 2,” J. Electrochem. Soc. 1982 volume 129, issue 10, 2282-2287.
[28] Dehui Xu, Bin Xiong, Guoqiang Wu, Yuchen Wang, Xiao Sun, and Yuelin Wang, “Isotropic Silicon Etching With XeF2 Gas for Wafer-Level Micromachining Applications,” JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, VOL. 21, NO. 6, DECEMBER 2012.
[29] http://www.eaglabs.com.tw/xrd.html
[30] M. E. Fitzpatrick, A.T. Fry, P. Holdway, F. A. Kandil, J. Shackleton and L. Suominen, “A National Measurement Good Practice Guide No.52,” p. 6, 2005.
[31] N. Radic ´a,*, A. Tonejcb, J. Ivkovc, P. Dubcˇeka, S. Bernstorffd, Z. Medunic´a, “Sputter-deposited amorphous-like tungsten,” Surface and Coatings Technology 180 –181, 66–70, 2004.
[32] http://www.garefully.com/eds.html
[33] H. S. Fogler, Elements of Chemical Reaction Engineering. Englewood
Cliffs, NJ: Prentice-Hall, 1986.
[34] H. F.Winters and J.W. Coburn, “The etching of silicon with XeF2 vapor,”
Appl. Phys. Lett., vol. 34, no. 1, pp. 70–73, Oct. 1979.
[35] K. Sugano and O. Tabata, “Reduction of surface roughness and aperture
size effect for etching of Si with XeF2,” J. Micromech. Microeng., vol. 12,
no. 6, pp. 911–916, Nov. 2002.
(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *