|
1. Levy, S. B., Marshall, B. Antibiotic resistance worldwide: causes, challenges, and responses, Nature Medicine, 10, pp. s122-s129 (2004). 2. James Q. Boedicker, Liang Li, Timothy R. Kline and Rustem F. Ismagilov., Detecting bacteria and determining their susceptibility to antibiotics by stochastic confinement in nanoliter droplets using plug-based microfluidics, Lab on a Chip, 1265–1272, (2008). 3. Roland R. Regoes, Camilla Wiuff, Renata M. Zappala, Kim N. Garner, Fernando Baquero, Bruce R. Levin., ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, p. 3670–3676, (2004). 4. Nate J. Cira, Jack Y. Ho, Megan E. Dueckb , Douglas B. Weibel., A self-loading microfluidic device for determining the minimum inhibitory concentration of antibiotics, Lab on a Chip, DOI: 10.1039, (2011). 5. Wang, M. M. et al., Tracking the in vivo evolution of multidrug resistance in Staphylococus aureus by whole genome sequencing, Pro. Natl. Acad. Sci., 104 , 9451, (2007). 6. Dragosits, M., Mattanovich D., Adaptive laboratory evolution - principles and applications for biotechnology, Microbial Cell Factory, 12, pp. 64, (2013). 7. Zhang Q., Lambert G., Liao, D., Kim, H., Robin, K, Tung, C., Pourmand, Austin, R. H. Acceleration of emergence of bacterial antibiotic resistance in connected microenvironment, Science, 333, 1764-1767, (2011). 8. Toprak, E. Veres, A, J.B. Mitchel, J. B., Hartl, D. L., Kishony, R. Evolutionary paths to antibiotic resistance under dynamically sustained drug selection, Nature Genetics, 44 101-106, (2012). 9. Rosenthal, A. Z., Michael B Elowitz, M. B. Following evolution of bacterial antibiotic resistance in real time, Nature Genetics, 44, 11-13, (2012). 10. Young, K. In vitro antibacterial resistance selection and quantitation, Current Protocols in Pharmacology, doi: 10.1002 (2006). 11. Takahashi, C. N., Miller, A. W., Ekness, F., Dunham, M. J., Klavins, E. A low cost, customizable turbidostat for use in synthetic circuit characterization, ACS Synthetic Biology, doi. 10.1021, (2015). 12. Mohan, R. et al., A multiplexed microfluidic platform for rapid antibiotic susceptibility testing, Biosensors and Bioelectronics, 49, 118-125, (2013). 13. Unger, M. A., Chou, H.-P., Thorsen, T., Scherer, A., Quake, S. R., Monolithic microfabricated valves and pumps by multilayer soft lithography, Science, 288, 113-116, (2000). 14. R. A. Kellogg, R. Gomez-Sjoberg, A. A. Leyrat, and S. Tay, Nat. Protocols 9, 1713 (2014). 15. Gu, G.Y., Lee, Y. W., Chiang, C. C., Yang, Y. T. A nanoliter microfluidic serial dilution bioreactor, Biomicrofluidics, 9, 044126, doi: 10.1063/1.4929946 (2015). 16. Okumus, B, Yildiz, S., Toprak, E. Fluidic and microfluidic tools for quantitative systems biology, Current Opinion in Biotechnology, 25, 30-38 (2014). 17. Cho, J. et al., A rapid antimicrobial susceptibility test based on single-cell morphological analysis. Sci. Transl. Med. 17, 267, doi. 10.1126 (2014). 18. Hsu, S. B., Waltman, P. E. Analysis of a model of two competitors in a chemostat with an external inhibitor, SIAM J. Applied Math. 528-540 (1992). 19. Fu, W. et al., Maximizing biomass productivity and cell density of Chlorella vulgaris by using light-emitting diode-based photobioreactor, Journal of Biotechnology 161, 242-249, (2012). 20. Peabody V, G. L., Winkler, J., Kao K. C. Tools for developing tolerance to toxic chemicals in microbial systems and perspectives on moving the field forward and into the industrial setting, Current Opinion in Chemical Engineering,6, 9-17, (2014). 21. R. A. Kellogg, R. Gomez-Sjoberg, A. A. Leyrat, and S. Tay, "High-throughput microfluidic single-cell analysis pipeline for studies of signaling dynamics," Nat. Protocols 9, 1713 (2014). 22. Toprak, E. et al., Building a morbidostast: an automated continuous culture device for studying bacterial drug resistance under dynamically sustained drug inhibition, Nature Protocol, 8, 555-567, (2013). 23. Elsevier Ltd.,Determination of minimum inhibitory concentrations (MICs) of antibacterial agents by broth dilution, (2003).
|